Nagram/TMessagesProj/jni/boringssl/crypto/fipsmodule/bn/div.c
2019-12-31 16:08:08 +03:00

887 lines
25 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.] */
#include <openssl/bn.h>
#include <assert.h>
#include <limits.h>
#include <openssl/err.h>
#include "internal.h"
#if !defined(BN_CAN_DIVIDE_ULLONG) && !defined(BN_CAN_USE_INLINE_ASM)
// bn_div_words divides a double-width |h|,|l| by |d| and returns the result,
// which must fit in a |BN_ULONG|.
static BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d) {
BN_ULONG dh, dl, q, ret = 0, th, tl, t;
int i, count = 2;
if (d == 0) {
return BN_MASK2;
}
i = BN_num_bits_word(d);
assert((i == BN_BITS2) || (h <= (BN_ULONG)1 << i));
i = BN_BITS2 - i;
if (h >= d) {
h -= d;
}
if (i) {
d <<= i;
h = (h << i) | (l >> (BN_BITS2 - i));
l <<= i;
}
dh = (d & BN_MASK2h) >> BN_BITS4;
dl = (d & BN_MASK2l);
for (;;) {
if ((h >> BN_BITS4) == dh) {
q = BN_MASK2l;
} else {
q = h / dh;
}
th = q * dh;
tl = dl * q;
for (;;) {
t = h - th;
if ((t & BN_MASK2h) ||
((tl) <= ((t << BN_BITS4) | ((l & BN_MASK2h) >> BN_BITS4)))) {
break;
}
q--;
th -= dh;
tl -= dl;
}
t = (tl >> BN_BITS4);
tl = (tl << BN_BITS4) & BN_MASK2h;
th += t;
if (l < tl) {
th++;
}
l -= tl;
if (h < th) {
h += d;
q--;
}
h -= th;
if (--count == 0) {
break;
}
ret = q << BN_BITS4;
h = (h << BN_BITS4) | (l >> BN_BITS4);
l = (l & BN_MASK2l) << BN_BITS4;
}
ret |= q;
return ret;
}
#endif // !defined(BN_CAN_DIVIDE_ULLONG) && !defined(BN_CAN_USE_INLINE_ASM)
static inline void bn_div_rem_words(BN_ULONG *quotient_out, BN_ULONG *rem_out,
BN_ULONG n0, BN_ULONG n1, BN_ULONG d0) {
// GCC and Clang generate function calls to |__udivdi3| and |__umoddi3| when
// the |BN_ULLONG|-based C code is used.
//
// GCC bugs:
// * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=14224
// * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=43721
// * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=54183
// * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58897
// * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=65668
//
// Clang bugs:
// * https://llvm.org/bugs/show_bug.cgi?id=6397
// * https://llvm.org/bugs/show_bug.cgi?id=12418
//
// These issues aren't specific to x86 and x86_64, so it might be worthwhile
// to add more assembly language implementations.
#if defined(BN_CAN_USE_INLINE_ASM) && defined(OPENSSL_X86)
__asm__ volatile("divl %4"
: "=a"(*quotient_out), "=d"(*rem_out)
: "a"(n1), "d"(n0), "rm"(d0)
: "cc");
#elif defined(BN_CAN_USE_INLINE_ASM) && defined(OPENSSL_X86_64)
__asm__ volatile("divq %4"
: "=a"(*quotient_out), "=d"(*rem_out)
: "a"(n1), "d"(n0), "rm"(d0)
: "cc");
#else
#if defined(BN_CAN_DIVIDE_ULLONG)
BN_ULLONG n = (((BN_ULLONG)n0) << BN_BITS2) | n1;
*quotient_out = (BN_ULONG)(n / d0);
#else
*quotient_out = bn_div_words(n0, n1, d0);
#endif
*rem_out = n1 - (*quotient_out * d0);
#endif
}
// BN_div computes "quotient := numerator / divisor", rounding towards zero,
// and sets up |rem| such that "quotient * divisor + rem = numerator" holds.
//
// Thus:
//
// quotient->neg == numerator->neg ^ divisor->neg
// (unless the result is zero)
// rem->neg == numerator->neg
// (unless the remainder is zero)
//
// If |quotient| or |rem| is NULL, the respective value is not returned.
//
// This was specifically designed to contain fewer branches that may leak
// sensitive information; see "New Branch Prediction Vulnerabilities in OpenSSL
// and Necessary Software Countermeasures" by Onur Acıçmez, Shay Gueron, and
// Jean-Pierre Seifert.
int BN_div(BIGNUM *quotient, BIGNUM *rem, const BIGNUM *numerator,
const BIGNUM *divisor, BN_CTX *ctx) {
int norm_shift, loop;
BIGNUM wnum;
BN_ULONG *resp, *wnump;
BN_ULONG d0, d1;
int num_n, div_n;
// This function relies on the historical minimal-width |BIGNUM| invariant.
// It is already not constant-time (constant-time reductions should use
// Montgomery logic), so we shrink all inputs and intermediate values to
// retain the previous behavior.
// Invalid zero-padding would have particularly bad consequences.
int numerator_width = bn_minimal_width(numerator);
int divisor_width = bn_minimal_width(divisor);
if ((numerator_width > 0 && numerator->d[numerator_width - 1] == 0) ||
(divisor_width > 0 && divisor->d[divisor_width - 1] == 0)) {
OPENSSL_PUT_ERROR(BN, BN_R_NOT_INITIALIZED);
return 0;
}
if (BN_is_zero(divisor)) {
OPENSSL_PUT_ERROR(BN, BN_R_DIV_BY_ZERO);
return 0;
}
BN_CTX_start(ctx);
BIGNUM *tmp = BN_CTX_get(ctx);
BIGNUM *snum = BN_CTX_get(ctx);
BIGNUM *sdiv = BN_CTX_get(ctx);
BIGNUM *res = NULL;
if (quotient == NULL) {
res = BN_CTX_get(ctx);
} else {
res = quotient;
}
if (sdiv == NULL || res == NULL) {
goto err;
}
// First we normalise the numbers
norm_shift = BN_BITS2 - (BN_num_bits(divisor) % BN_BITS2);
if (!BN_lshift(sdiv, divisor, norm_shift)) {
goto err;
}
bn_set_minimal_width(sdiv);
sdiv->neg = 0;
norm_shift += BN_BITS2;
if (!BN_lshift(snum, numerator, norm_shift)) {
goto err;
}
bn_set_minimal_width(snum);
snum->neg = 0;
// Since we don't want to have special-case logic for the case where snum is
// larger than sdiv, we pad snum with enough zeroes without changing its
// value.
if (snum->width <= sdiv->width + 1) {
if (!bn_wexpand(snum, sdiv->width + 2)) {
goto err;
}
for (int i = snum->width; i < sdiv->width + 2; i++) {
snum->d[i] = 0;
}
snum->width = sdiv->width + 2;
} else {
if (!bn_wexpand(snum, snum->width + 1)) {
goto err;
}
snum->d[snum->width] = 0;
snum->width++;
}
div_n = sdiv->width;
num_n = snum->width;
loop = num_n - div_n;
// Lets setup a 'window' into snum
// This is the part that corresponds to the current
// 'area' being divided
wnum.neg = 0;
wnum.d = &(snum->d[loop]);
wnum.width = div_n;
// only needed when BN_ucmp messes up the values between width and max
wnum.dmax = snum->dmax - loop; // so we don't step out of bounds
// Get the top 2 words of sdiv
// div_n=sdiv->width;
d0 = sdiv->d[div_n - 1];
d1 = (div_n == 1) ? 0 : sdiv->d[div_n - 2];
// pointer to the 'top' of snum
wnump = &(snum->d[num_n - 1]);
// Setup to 'res'
res->neg = (numerator->neg ^ divisor->neg);
if (!bn_wexpand(res, loop + 1)) {
goto err;
}
res->width = loop - 1;
resp = &(res->d[loop - 1]);
// space for temp
if (!bn_wexpand(tmp, div_n + 1)) {
goto err;
}
// if res->width == 0 then clear the neg value otherwise decrease
// the resp pointer
if (res->width == 0) {
res->neg = 0;
} else {
resp--;
}
for (int i = 0; i < loop - 1; i++, wnump--, resp--) {
BN_ULONG q, l0;
// the first part of the loop uses the top two words of snum and sdiv to
// calculate a BN_ULONG q such that | wnum - sdiv * q | < sdiv
BN_ULONG n0, n1, rm = 0;
n0 = wnump[0];
n1 = wnump[-1];
if (n0 == d0) {
q = BN_MASK2;
} else {
// n0 < d0
bn_div_rem_words(&q, &rm, n0, n1, d0);
#ifdef BN_ULLONG
BN_ULLONG t2 = (BN_ULLONG)d1 * q;
for (;;) {
if (t2 <= ((((BN_ULLONG)rm) << BN_BITS2) | wnump[-2])) {
break;
}
q--;
rm += d0;
if (rm < d0) {
break; // don't let rm overflow
}
t2 -= d1;
}
#else // !BN_ULLONG
BN_ULONG t2l, t2h;
BN_UMULT_LOHI(t2l, t2h, d1, q);
for (;;) {
if (t2h < rm ||
(t2h == rm && t2l <= wnump[-2])) {
break;
}
q--;
rm += d0;
if (rm < d0) {
break; // don't let rm overflow
}
if (t2l < d1) {
t2h--;
}
t2l -= d1;
}
#endif // !BN_ULLONG
}
l0 = bn_mul_words(tmp->d, sdiv->d, div_n, q);
tmp->d[div_n] = l0;
wnum.d--;
// ingore top values of the bignums just sub the two
// BN_ULONG arrays with bn_sub_words
if (bn_sub_words(wnum.d, wnum.d, tmp->d, div_n + 1)) {
// Note: As we have considered only the leading
// two BN_ULONGs in the calculation of q, sdiv * q
// might be greater than wnum (but then (q-1) * sdiv
// is less or equal than wnum)
q--;
if (bn_add_words(wnum.d, wnum.d, sdiv->d, div_n)) {
// we can't have an overflow here (assuming
// that q != 0, but if q == 0 then tmp is
// zero anyway)
(*wnump)++;
}
}
// store part of the result
*resp = q;
}
bn_set_minimal_width(snum);
if (rem != NULL) {
// Keep a copy of the neg flag in numerator because if |rem| == |numerator|
// |BN_rshift| will overwrite it.
int neg = numerator->neg;
if (!BN_rshift(rem, snum, norm_shift)) {
goto err;
}
if (!BN_is_zero(rem)) {
rem->neg = neg;
}
}
bn_set_minimal_width(res);
BN_CTX_end(ctx);
return 1;
err:
BN_CTX_end(ctx);
return 0;
}
int BN_nnmod(BIGNUM *r, const BIGNUM *m, const BIGNUM *d, BN_CTX *ctx) {
if (!(BN_mod(r, m, d, ctx))) {
return 0;
}
if (!r->neg) {
return 1;
}
// now -|d| < r < 0, so we have to set r := r + |d|.
return (d->neg ? BN_sub : BN_add)(r, r, d);
}
BN_ULONG bn_reduce_once(BN_ULONG *r, const BN_ULONG *a, BN_ULONG carry,
const BN_ULONG *m, size_t num) {
assert(r != a);
// |r| = |a| - |m|. |bn_sub_words| performs the bulk of the subtraction, and
// then we apply the borrow to |carry|.
carry -= bn_sub_words(r, a, m, num);
// We know 0 <= |a| < 2*|m|, so -|m| <= |r| < |m|.
//
// If 0 <= |r| < |m|, |r| fits in |num| words and |carry| is zero. We then
// wish to select |r| as the answer. Otherwise -m <= r < 0 and we wish to
// return |r| + |m|, or |a|. |carry| must then be -1 or all ones. In both
// cases, |carry| is a suitable input to |bn_select_words|.
//
// Although |carry| may be one if it was one on input and |bn_sub_words|
// returns zero, this would give |r| > |m|, violating our input assumptions.
assert(carry == 0 || carry == (BN_ULONG)-1);
bn_select_words(r, carry, a /* r < 0 */, r /* r >= 0 */, num);
return carry;
}
BN_ULONG bn_reduce_once_in_place(BN_ULONG *r, BN_ULONG carry, const BN_ULONG *m,
BN_ULONG *tmp, size_t num) {
// See |bn_reduce_once| for why this logic works.
carry -= bn_sub_words(tmp, r, m, num);
assert(carry == 0 || carry == (BN_ULONG)-1);
bn_select_words(r, carry, r /* tmp < 0 */, tmp /* tmp >= 0 */, num);
return carry;
}
void bn_mod_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
const BN_ULONG *m, BN_ULONG *tmp, size_t num) {
// r = a - b
BN_ULONG borrow = bn_sub_words(r, a, b, num);
// tmp = a - b + m
bn_add_words(tmp, r, m, num);
bn_select_words(r, 0 - borrow, tmp /* r < 0 */, r /* r >= 0 */, num);
}
void bn_mod_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
const BN_ULONG *m, BN_ULONG *tmp, size_t num) {
BN_ULONG carry = bn_add_words(r, a, b, num);
bn_reduce_once_in_place(r, carry, m, tmp, num);
}
int bn_div_consttime(BIGNUM *quotient, BIGNUM *remainder,
const BIGNUM *numerator, const BIGNUM *divisor,
BN_CTX *ctx) {
if (BN_is_negative(numerator) || BN_is_negative(divisor)) {
OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER);
return 0;
}
if (BN_is_zero(divisor)) {
OPENSSL_PUT_ERROR(BN, BN_R_DIV_BY_ZERO);
return 0;
}
// This function implements long division in binary. It is not very efficient,
// but it is simple, easy to make constant-time, and performant enough for RSA
// key generation.
int ret = 0;
BN_CTX_start(ctx);
BIGNUM *q = quotient, *r = remainder;
if (quotient == NULL || quotient == numerator || quotient == divisor) {
q = BN_CTX_get(ctx);
}
if (remainder == NULL || remainder == numerator || remainder == divisor) {
r = BN_CTX_get(ctx);
}
BIGNUM *tmp = BN_CTX_get(ctx);
if (q == NULL || r == NULL || tmp == NULL ||
!bn_wexpand(q, numerator->width) ||
!bn_wexpand(r, divisor->width) ||
!bn_wexpand(tmp, divisor->width)) {
goto err;
}
OPENSSL_memset(q->d, 0, numerator->width * sizeof(BN_ULONG));
q->width = numerator->width;
q->neg = 0;
OPENSSL_memset(r->d, 0, divisor->width * sizeof(BN_ULONG));
r->width = divisor->width;
r->neg = 0;
// Incorporate |numerator| into |r|, one bit at a time, reducing after each
// step. At the start of each loop iteration, |r| < |divisor|
for (int i = numerator->width - 1; i >= 0; i--) {
for (int bit = BN_BITS2 - 1; bit >= 0; bit--) {
// Incorporate the next bit of the numerator, by computing
// r = 2*r or 2*r + 1. Note the result fits in one more word. We store the
// extra word in |carry|.
BN_ULONG carry = bn_add_words(r->d, r->d, r->d, divisor->width);
r->d[0] |= (numerator->d[i] >> bit) & 1;
// |r| was previously fully-reduced, so we know:
// 2*0 <= r <= 2*(divisor-1) + 1
// 0 <= r <= 2*divisor - 1 < 2*divisor.
// Thus |r| satisfies the preconditions for |bn_reduce_once_in_place|.
BN_ULONG subtracted = bn_reduce_once_in_place(r->d, carry, divisor->d,
tmp->d, divisor->width);
// The corresponding bit of the quotient is set iff we needed to subtract.
q->d[i] |= (~subtracted & 1) << bit;
}
}
if ((quotient != NULL && !BN_copy(quotient, q)) ||
(remainder != NULL && !BN_copy(remainder, r))) {
goto err;
}
ret = 1;
err:
BN_CTX_end(ctx);
return ret;
}
static BIGNUM *bn_scratch_space_from_ctx(size_t width, BN_CTX *ctx) {
BIGNUM *ret = BN_CTX_get(ctx);
if (ret == NULL ||
!bn_wexpand(ret, width)) {
return NULL;
}
ret->neg = 0;
ret->width = width;
return ret;
}
// bn_resized_from_ctx returns |bn| with width at least |width| or NULL on
// error. This is so it may be used with low-level "words" functions. If
// necessary, it allocates a new |BIGNUM| with a lifetime of the current scope
// in |ctx|, so the caller does not need to explicitly free it. |bn| must fit in
// |width| words.
static const BIGNUM *bn_resized_from_ctx(const BIGNUM *bn, size_t width,
BN_CTX *ctx) {
if ((size_t)bn->width >= width) {
// Any excess words must be zero.
assert(bn_fits_in_words(bn, width));
return bn;
}
BIGNUM *ret = bn_scratch_space_from_ctx(width, ctx);
if (ret == NULL ||
!BN_copy(ret, bn) ||
!bn_resize_words(ret, width)) {
return NULL;
}
return ret;
}
int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
BN_CTX *ctx) {
if (!BN_add(r, a, b)) {
return 0;
}
return BN_nnmod(r, r, m, ctx);
}
int BN_mod_add_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
const BIGNUM *m) {
BN_CTX *ctx = BN_CTX_new();
int ok = ctx != NULL &&
bn_mod_add_consttime(r, a, b, m, ctx);
BN_CTX_free(ctx);
return ok;
}
int bn_mod_add_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
const BIGNUM *m, BN_CTX *ctx) {
BN_CTX_start(ctx);
a = bn_resized_from_ctx(a, m->width, ctx);
b = bn_resized_from_ctx(b, m->width, ctx);
BIGNUM *tmp = bn_scratch_space_from_ctx(m->width, ctx);
int ok = a != NULL && b != NULL && tmp != NULL &&
bn_wexpand(r, m->width);
if (ok) {
bn_mod_add_words(r->d, a->d, b->d, m->d, tmp->d, m->width);
r->width = m->width;
r->neg = 0;
}
BN_CTX_end(ctx);
return ok;
}
int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
BN_CTX *ctx) {
if (!BN_sub(r, a, b)) {
return 0;
}
return BN_nnmod(r, r, m, ctx);
}
int bn_mod_sub_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
const BIGNUM *m, BN_CTX *ctx) {
BN_CTX_start(ctx);
a = bn_resized_from_ctx(a, m->width, ctx);
b = bn_resized_from_ctx(b, m->width, ctx);
BIGNUM *tmp = bn_scratch_space_from_ctx(m->width, ctx);
int ok = a != NULL && b != NULL && tmp != NULL &&
bn_wexpand(r, m->width);
if (ok) {
bn_mod_sub_words(r->d, a->d, b->d, m->d, tmp->d, m->width);
r->width = m->width;
r->neg = 0;
}
BN_CTX_end(ctx);
return ok;
}
int BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
const BIGNUM *m) {
BN_CTX *ctx = BN_CTX_new();
int ok = ctx != NULL &&
bn_mod_sub_consttime(r, a, b, m, ctx);
BN_CTX_free(ctx);
return ok;
}
int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
BN_CTX *ctx) {
BIGNUM *t;
int ret = 0;
BN_CTX_start(ctx);
t = BN_CTX_get(ctx);
if (t == NULL) {
goto err;
}
if (a == b) {
if (!BN_sqr(t, a, ctx)) {
goto err;
}
} else {
if (!BN_mul(t, a, b, ctx)) {
goto err;
}
}
if (!BN_nnmod(r, t, m, ctx)) {
goto err;
}
ret = 1;
err:
BN_CTX_end(ctx);
return ret;
}
int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx) {
if (!BN_sqr(r, a, ctx)) {
return 0;
}
// r->neg == 0, thus we don't need BN_nnmod
return BN_mod(r, r, m, ctx);
}
int BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m,
BN_CTX *ctx) {
BIGNUM *abs_m = NULL;
int ret;
if (!BN_nnmod(r, a, m, ctx)) {
return 0;
}
if (m->neg) {
abs_m = BN_dup(m);
if (abs_m == NULL) {
return 0;
}
abs_m->neg = 0;
}
ret = bn_mod_lshift_consttime(r, r, n, (abs_m ? abs_m : m), ctx);
BN_free(abs_m);
return ret;
}
int bn_mod_lshift_consttime(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m,
BN_CTX *ctx) {
if (!BN_copy(r, a)) {
return 0;
}
for (int i = 0; i < n; i++) {
if (!bn_mod_lshift1_consttime(r, r, m, ctx)) {
return 0;
}
}
return 1;
}
int BN_mod_lshift_quick(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m) {
BN_CTX *ctx = BN_CTX_new();
int ok = ctx != NULL &&
bn_mod_lshift_consttime(r, a, n, m, ctx);
BN_CTX_free(ctx);
return ok;
}
int BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx) {
if (!BN_lshift1(r, a)) {
return 0;
}
return BN_nnmod(r, r, m, ctx);
}
int bn_mod_lshift1_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *m,
BN_CTX *ctx) {
return bn_mod_add_consttime(r, a, a, m, ctx);
}
int BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *m) {
BN_CTX *ctx = BN_CTX_new();
int ok = ctx != NULL &&
bn_mod_lshift1_consttime(r, a, m, ctx);
BN_CTX_free(ctx);
return ok;
}
BN_ULONG BN_div_word(BIGNUM *a, BN_ULONG w) {
BN_ULONG ret = 0;
int i, j;
if (!w) {
// actually this an error (division by zero)
return (BN_ULONG) - 1;
}
if (a->width == 0) {
return 0;
}
// normalize input for |bn_div_rem_words|.
j = BN_BITS2 - BN_num_bits_word(w);
w <<= j;
if (!BN_lshift(a, a, j)) {
return (BN_ULONG) - 1;
}
for (i = a->width - 1; i >= 0; i--) {
BN_ULONG l = a->d[i];
BN_ULONG d;
BN_ULONG unused_rem;
bn_div_rem_words(&d, &unused_rem, ret, l, w);
ret = l - (d * w);
a->d[i] = d;
}
bn_set_minimal_width(a);
ret >>= j;
return ret;
}
BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w) {
#ifndef BN_CAN_DIVIDE_ULLONG
BN_ULONG ret = 0;
#else
BN_ULLONG ret = 0;
#endif
int i;
if (w == 0) {
return (BN_ULONG) -1;
}
#ifndef BN_CAN_DIVIDE_ULLONG
// If |w| is too long and we don't have |BN_ULLONG| division then we need to
// fall back to using |BN_div_word|.
if (w > ((BN_ULONG)1 << BN_BITS4)) {
BIGNUM *tmp = BN_dup(a);
if (tmp == NULL) {
return (BN_ULONG)-1;
}
ret = BN_div_word(tmp, w);
BN_free(tmp);
return ret;
}
#endif
for (i = a->width - 1; i >= 0; i--) {
#ifndef BN_CAN_DIVIDE_ULLONG
ret = ((ret << BN_BITS4) | ((a->d[i] >> BN_BITS4) & BN_MASK2l)) % w;
ret = ((ret << BN_BITS4) | (a->d[i] & BN_MASK2l)) % w;
#else
ret = (BN_ULLONG)(((ret << (BN_ULLONG)BN_BITS2) | a->d[i]) % (BN_ULLONG)w);
#endif
}
return (BN_ULONG)ret;
}
int BN_mod_pow2(BIGNUM *r, const BIGNUM *a, size_t e) {
if (e == 0 || a->width == 0) {
BN_zero(r);
return 1;
}
size_t num_words = 1 + ((e - 1) / BN_BITS2);
// If |a| definitely has less than |e| bits, just BN_copy.
if ((size_t) a->width < num_words) {
return BN_copy(r, a) != NULL;
}
// Otherwise, first make sure we have enough space in |r|.
// Note that this will fail if num_words > INT_MAX.
if (!bn_wexpand(r, num_words)) {
return 0;
}
// Copy the content of |a| into |r|.
OPENSSL_memcpy(r->d, a->d, num_words * sizeof(BN_ULONG));
// If |e| isn't word-aligned, we have to mask off some of our bits.
size_t top_word_exponent = e % (sizeof(BN_ULONG) * 8);
if (top_word_exponent != 0) {
r->d[num_words - 1] &= (((BN_ULONG) 1) << top_word_exponent) - 1;
}
// Fill in the remaining fields of |r|.
r->neg = a->neg;
r->width = (int) num_words;
bn_set_minimal_width(r);
return 1;
}
int BN_nnmod_pow2(BIGNUM *r, const BIGNUM *a, size_t e) {
if (!BN_mod_pow2(r, a, e)) {
return 0;
}
// If the returned value was non-negative, we're done.
if (BN_is_zero(r) || !r->neg) {
return 1;
}
size_t num_words = 1 + (e - 1) / BN_BITS2;
// Expand |r| to the size of our modulus.
if (!bn_wexpand(r, num_words)) {
return 0;
}
// Clear the upper words of |r|.
OPENSSL_memset(&r->d[r->width], 0, (num_words - r->width) * BN_BYTES);
// Set parameters of |r|.
r->neg = 0;
r->width = (int) num_words;
// Now, invert every word. The idea here is that we want to compute 2^e-|x|,
// which is actually equivalent to the twos-complement representation of |x|
// in |e| bits, which is -x = ~x + 1.
for (int i = 0; i < r->width; i++) {
r->d[i] = ~r->d[i];
}
// If our exponent doesn't span the top word, we have to mask the rest.
size_t top_word_exponent = e % BN_BITS2;
if (top_word_exponent != 0) {
r->d[r->width - 1] &= (((BN_ULONG) 1) << top_word_exponent) - 1;
}
// Keep the minimal-width invariant for |BIGNUM|.
bn_set_minimal_width(r);
// Finally, add one, for the reason described above.
return BN_add(r, r, BN_value_one());
}