Nagram/TMessagesProj/jni/boringssl/include/openssl/aead.h
2019-12-31 16:08:08 +03:00

460 lines
21 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Copyright (c) 2014, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#ifndef OPENSSL_HEADER_AEAD_H
#define OPENSSL_HEADER_AEAD_H
#include <openssl/base.h>
#if defined(__cplusplus)
extern "C" {
#endif
// Authenticated Encryption with Additional Data.
//
// AEAD couples confidentiality and integrity in a single primitive. AEAD
// algorithms take a key and then can seal and open individual messages. Each
// message has a unique, per-message nonce and, optionally, additional data
// which is authenticated but not included in the ciphertext.
//
// The |EVP_AEAD_CTX_init| function initialises an |EVP_AEAD_CTX| structure and
// performs any precomputation needed to use |aead| with |key|. The length of
// the key, |key_len|, is given in bytes.
//
// The |tag_len| argument contains the length of the tags, in bytes, and allows
// for the processing of truncated authenticators. A zero value indicates that
// the default tag length should be used and this is defined as
// |EVP_AEAD_DEFAULT_TAG_LENGTH| in order to make the code clear. Using
// truncated tags increases an attacker's chance of creating a valid forgery.
// Be aware that the attacker's chance may increase more than exponentially as
// would naively be expected.
//
// When no longer needed, the initialised |EVP_AEAD_CTX| structure must be
// passed to |EVP_AEAD_CTX_cleanup|, which will deallocate any memory used.
//
// With an |EVP_AEAD_CTX| in hand, one can seal and open messages. These
// operations are intended to meet the standard notions of privacy and
// authenticity for authenticated encryption. For formal definitions see
// Bellare and Namprempre, "Authenticated encryption: relations among notions
// and analysis of the generic composition paradigm," Lecture Notes in Computer
// Science B<1976> (2000), 531545,
// http://www-cse.ucsd.edu/~mihir/papers/oem.html.
//
// When sealing messages, a nonce must be given. The length of the nonce is
// fixed by the AEAD in use and is returned by |EVP_AEAD_nonce_length|. *The
// nonce must be unique for all messages with the same key*. This is critically
// important - nonce reuse may completely undermine the security of the AEAD.
// Nonces may be predictable and public, so long as they are unique. Uniqueness
// may be achieved with a simple counter or, if large enough, may be generated
// randomly. The nonce must be passed into the "open" operation by the receiver
// so must either be implicit (e.g. a counter), or must be transmitted along
// with the sealed message.
//
// The "seal" and "open" operations are atomic - an entire message must be
// encrypted or decrypted in a single call. Large messages may have to be split
// up in order to accommodate this. When doing so, be mindful of the need not to
// repeat nonces and the possibility that an attacker could duplicate, reorder
// or drop message chunks. For example, using a single key for a given (large)
// message and sealing chunks with nonces counting from zero would be secure as
// long as the number of chunks was securely transmitted. (Otherwise an
// attacker could truncate the message by dropping chunks from the end.)
//
// The number of chunks could be transmitted by prefixing it to the plaintext,
// for example. This also assumes that no other message would ever use the same
// key otherwise the rule that nonces must be unique for a given key would be
// violated.
//
// The "seal" and "open" operations also permit additional data to be
// authenticated via the |ad| parameter. This data is not included in the
// ciphertext and must be identical for both the "seal" and "open" call. This
// permits implicit context to be authenticated but may be empty if not needed.
//
// The "seal" and "open" operations may work in-place if the |out| and |in|
// arguments are equal. Otherwise, if |out| and |in| alias, input data may be
// overwritten before it is read. This situation will cause an error.
//
// The "seal" and "open" operations return one on success and zero on error.
// AEAD algorithms.
// EVP_aead_aes_128_gcm is AES-128 in Galois Counter Mode.
//
// Note: AES-GCM should only be used with 12-byte (96-bit) nonces. Although it
// is specified to take a variable-length nonce, nonces with other lengths are
// effectively randomized, which means one must consider collisions. Unless
// implementing an existing protocol which has already specified incorrect
// parameters, only use 12-byte nonces.
OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_gcm(void);
// EVP_aead_aes_192_gcm is AES-192 in Galois Counter Mode.
//
// WARNING: AES-192 is superfluous and shouldn't exist. NIST should never have
// defined it. Use only when interop with another system requires it, never
// de novo.
//
// Note: AES-GCM should only be used with 12-byte (96-bit) nonces. Although it
// is specified to take a variable-length nonce, nonces with other lengths are
// effectively randomized, which means one must consider collisions. Unless
// implementing an existing protocol which has already specified incorrect
// parameters, only use 12-byte nonces.
OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_192_gcm(void);
// EVP_aead_aes_256_gcm is AES-256 in Galois Counter Mode.
//
// Note: AES-GCM should only be used with 12-byte (96-bit) nonces. Although it
// is specified to take a variable-length nonce, nonces with other lengths are
// effectively randomized, which means one must consider collisions. Unless
// implementing an existing protocol which has already specified incorrect
// parameters, only use 12-byte nonces.
OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_gcm(void);
// EVP_aead_chacha20_poly1305 is the AEAD built from ChaCha20 and
// Poly1305 as described in RFC 7539.
OPENSSL_EXPORT const EVP_AEAD *EVP_aead_chacha20_poly1305(void);
// EVP_aead_xchacha20_poly1305 is ChaCha20-Poly1305 with an extended nonce that
// makes random generation of nonces safe.
OPENSSL_EXPORT const EVP_AEAD *EVP_aead_xchacha20_poly1305(void);
// EVP_aead_aes_128_ctr_hmac_sha256 is AES-128 in CTR mode with HMAC-SHA256 for
// authentication. The nonce is 12 bytes; the bottom 32-bits are used as the
// block counter, thus the maximum plaintext size is 64GB.
OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_ctr_hmac_sha256(void);
// EVP_aead_aes_256_ctr_hmac_sha256 is AES-256 in CTR mode with HMAC-SHA256 for
// authentication. See |EVP_aead_aes_128_ctr_hmac_sha256| for details.
OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_ctr_hmac_sha256(void);
// EVP_aead_aes_128_gcm_siv is AES-128 in GCM-SIV mode. See
// https://tools.ietf.org/html/draft-irtf-cfrg-gcmsiv-02
OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_gcm_siv(void);
// EVP_aead_aes_256_gcm_siv is AES-256 in GCM-SIV mode. See
// https://tools.ietf.org/html/draft-irtf-cfrg-gcmsiv-02
OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_gcm_siv(void);
// EVP_aead_aes_128_ccm_bluetooth is AES-128-CCM with M=4 and L=2 (4-byte tags
// and 13-byte nonces), as decribed in the Bluetooth Core Specification v5.0,
// Volume 6, Part E, Section 1.
OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_ccm_bluetooth(void);
// EVP_aead_aes_128_ccm_bluetooth_8 is AES-128-CCM with M=8 and L=2 (8-byte tags
// and 13-byte nonces), as used in the Bluetooth Mesh Networking Specification
// v1.0.
OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_ccm_bluetooth_8(void);
// EVP_has_aes_hardware returns one if we enable hardware support for fast and
// constant-time AES-GCM.
OPENSSL_EXPORT int EVP_has_aes_hardware(void);
// Utility functions.
// EVP_AEAD_key_length returns the length, in bytes, of the keys used by
// |aead|.
OPENSSL_EXPORT size_t EVP_AEAD_key_length(const EVP_AEAD *aead);
// EVP_AEAD_nonce_length returns the length, in bytes, of the per-message nonce
// for |aead|.
OPENSSL_EXPORT size_t EVP_AEAD_nonce_length(const EVP_AEAD *aead);
// EVP_AEAD_max_overhead returns the maximum number of additional bytes added
// by the act of sealing data with |aead|.
OPENSSL_EXPORT size_t EVP_AEAD_max_overhead(const EVP_AEAD *aead);
// EVP_AEAD_max_tag_len returns the maximum tag length when using |aead|. This
// is the largest value that can be passed as |tag_len| to
// |EVP_AEAD_CTX_init|.
OPENSSL_EXPORT size_t EVP_AEAD_max_tag_len(const EVP_AEAD *aead);
// AEAD operations.
union evp_aead_ctx_st_state {
uint8_t opaque[580];
uint64_t alignment;
};
// An EVP_AEAD_CTX represents an AEAD algorithm configured with a specific key
// and message-independent IV.
typedef struct evp_aead_ctx_st {
const EVP_AEAD *aead;
union evp_aead_ctx_st_state state;
// tag_len may contain the actual length of the authentication tag if it is
// known at initialization time.
uint8_t tag_len;
} EVP_AEAD_CTX;
// EVP_AEAD_MAX_KEY_LENGTH contains the maximum key length used by
// any AEAD defined in this header.
#define EVP_AEAD_MAX_KEY_LENGTH 80
// EVP_AEAD_MAX_NONCE_LENGTH contains the maximum nonce length used by
// any AEAD defined in this header.
#define EVP_AEAD_MAX_NONCE_LENGTH 24
// EVP_AEAD_MAX_OVERHEAD contains the maximum overhead used by any AEAD
// defined in this header.
#define EVP_AEAD_MAX_OVERHEAD 64
// EVP_AEAD_DEFAULT_TAG_LENGTH is a magic value that can be passed to
// EVP_AEAD_CTX_init to indicate that the default tag length for an AEAD should
// be used.
#define EVP_AEAD_DEFAULT_TAG_LENGTH 0
// EVP_AEAD_CTX_zero sets an uninitialized |ctx| to the zero state. It must be
// initialized with |EVP_AEAD_CTX_init| before use. It is safe, but not
// necessary, to call |EVP_AEAD_CTX_cleanup| in this state. This may be used for
// more uniform cleanup of |EVP_AEAD_CTX|.
OPENSSL_EXPORT void EVP_AEAD_CTX_zero(EVP_AEAD_CTX *ctx);
// EVP_AEAD_CTX_new allocates an |EVP_AEAD_CTX|, calls |EVP_AEAD_CTX_init| and
// returns the |EVP_AEAD_CTX|, or NULL on error.
OPENSSL_EXPORT EVP_AEAD_CTX *EVP_AEAD_CTX_new(const EVP_AEAD *aead,
const uint8_t *key,
size_t key_len, size_t tag_len);
// EVP_AEAD_CTX_free calls |EVP_AEAD_CTX_cleanup| and |OPENSSL_free| on
// |ctx|.
OPENSSL_EXPORT void EVP_AEAD_CTX_free(EVP_AEAD_CTX *ctx);
// EVP_AEAD_CTX_init initializes |ctx| for the given AEAD algorithm. The |impl|
// argument is ignored and should be NULL. Authentication tags may be truncated
// by passing a size as |tag_len|. A |tag_len| of zero indicates the default
// tag length and this is defined as EVP_AEAD_DEFAULT_TAG_LENGTH for
// readability.
//
// Returns 1 on success. Otherwise returns 0 and pushes to the error stack. In
// the error case, you do not need to call |EVP_AEAD_CTX_cleanup|, but it's
// harmless to do so.
OPENSSL_EXPORT int EVP_AEAD_CTX_init(EVP_AEAD_CTX *ctx, const EVP_AEAD *aead,
const uint8_t *key, size_t key_len,
size_t tag_len, ENGINE *impl);
// EVP_AEAD_CTX_cleanup frees any data allocated by |ctx|. It is a no-op to
// call |EVP_AEAD_CTX_cleanup| on a |EVP_AEAD_CTX| that has been |memset| to
// all zeros.
OPENSSL_EXPORT void EVP_AEAD_CTX_cleanup(EVP_AEAD_CTX *ctx);
// EVP_AEAD_CTX_seal encrypts and authenticates |in_len| bytes from |in| and
// authenticates |ad_len| bytes from |ad| and writes the result to |out|. It
// returns one on success and zero otherwise.
//
// This function may be called concurrently with itself or any other seal/open
// function on the same |EVP_AEAD_CTX|.
//
// At most |max_out_len| bytes are written to |out| and, in order to ensure
// success, |max_out_len| should be |in_len| plus the result of
// |EVP_AEAD_max_overhead|. On successful return, |*out_len| is set to the
// actual number of bytes written.
//
// The length of |nonce|, |nonce_len|, must be equal to the result of
// |EVP_AEAD_nonce_length| for this AEAD.
//
// |EVP_AEAD_CTX_seal| never results in a partial output. If |max_out_len| is
// insufficient, zero will be returned. If any error occurs, |out| will be
// filled with zero bytes and |*out_len| set to zero.
//
// If |in| and |out| alias then |out| must be == |in|.
OPENSSL_EXPORT int EVP_AEAD_CTX_seal(const EVP_AEAD_CTX *ctx, uint8_t *out,
size_t *out_len, size_t max_out_len,
const uint8_t *nonce, size_t nonce_len,
const uint8_t *in, size_t in_len,
const uint8_t *ad, size_t ad_len);
// EVP_AEAD_CTX_open authenticates |in_len| bytes from |in| and |ad_len| bytes
// from |ad| and decrypts at most |in_len| bytes into |out|. It returns one on
// success and zero otherwise.
//
// This function may be called concurrently with itself or any other seal/open
// function on the same |EVP_AEAD_CTX|.
//
// At most |in_len| bytes are written to |out|. In order to ensure success,
// |max_out_len| should be at least |in_len|. On successful return, |*out_len|
// is set to the the actual number of bytes written.
//
// The length of |nonce|, |nonce_len|, must be equal to the result of
// |EVP_AEAD_nonce_length| for this AEAD.
//
// |EVP_AEAD_CTX_open| never results in a partial output. If |max_out_len| is
// insufficient, zero will be returned. If any error occurs, |out| will be
// filled with zero bytes and |*out_len| set to zero.
//
// If |in| and |out| alias then |out| must be == |in|.
OPENSSL_EXPORT int EVP_AEAD_CTX_open(const EVP_AEAD_CTX *ctx, uint8_t *out,
size_t *out_len, size_t max_out_len,
const uint8_t *nonce, size_t nonce_len,
const uint8_t *in, size_t in_len,
const uint8_t *ad, size_t ad_len);
// EVP_AEAD_CTX_seal_scatter encrypts and authenticates |in_len| bytes from |in|
// and authenticates |ad_len| bytes from |ad|. It writes |in_len| bytes of
// ciphertext to |out| and the authentication tag to |out_tag|. It returns one
// on success and zero otherwise.
//
// This function may be called concurrently with itself or any other seal/open
// function on the same |EVP_AEAD_CTX|.
//
// Exactly |in_len| bytes are written to |out|, and up to
// |EVP_AEAD_max_overhead+extra_in_len| bytes to |out_tag|. On successful
// return, |*out_tag_len| is set to the actual number of bytes written to
// |out_tag|.
//
// |extra_in| may point to an additional plaintext input buffer if the cipher
// supports it. If present, |extra_in_len| additional bytes of plaintext are
// encrypted and authenticated, and the ciphertext is written (before the tag)
// to |out_tag|. |max_out_tag_len| must be sized to allow for the additional
// |extra_in_len| bytes.
//
// The length of |nonce|, |nonce_len|, must be equal to the result of
// |EVP_AEAD_nonce_length| for this AEAD.
//
// |EVP_AEAD_CTX_seal_scatter| never results in a partial output. If
// |max_out_tag_len| is insufficient, zero will be returned. If any error
// occurs, |out| and |out_tag| will be filled with zero bytes and |*out_tag_len|
// set to zero.
//
// If |in| and |out| alias then |out| must be == |in|. |out_tag| may not alias
// any other argument.
OPENSSL_EXPORT int EVP_AEAD_CTX_seal_scatter(
const EVP_AEAD_CTX *ctx, uint8_t *out,
uint8_t *out_tag, size_t *out_tag_len, size_t max_out_tag_len,
const uint8_t *nonce, size_t nonce_len,
const uint8_t *in, size_t in_len,
const uint8_t *extra_in, size_t extra_in_len,
const uint8_t *ad, size_t ad_len);
// EVP_AEAD_CTX_open_gather decrypts and authenticates |in_len| bytes from |in|
// and authenticates |ad_len| bytes from |ad| using |in_tag_len| bytes of
// authentication tag from |in_tag|. If successful, it writes |in_len| bytes of
// plaintext to |out|. It returns one on success and zero otherwise.
//
// This function may be called concurrently with itself or any other seal/open
// function on the same |EVP_AEAD_CTX|.
//
// The length of |nonce|, |nonce_len|, must be equal to the result of
// |EVP_AEAD_nonce_length| for this AEAD.
//
// |EVP_AEAD_CTX_open_gather| never results in a partial output. If any error
// occurs, |out| will be filled with zero bytes.
//
// If |in| and |out| alias then |out| must be == |in|.
OPENSSL_EXPORT int EVP_AEAD_CTX_open_gather(
const EVP_AEAD_CTX *ctx, uint8_t *out, const uint8_t *nonce,
size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *in_tag,
size_t in_tag_len, const uint8_t *ad, size_t ad_len);
// EVP_AEAD_CTX_aead returns the underlying AEAD for |ctx|, or NULL if one has
// not been set.
OPENSSL_EXPORT const EVP_AEAD *EVP_AEAD_CTX_aead(const EVP_AEAD_CTX *ctx);
// TLS-specific AEAD algorithms.
//
// These AEAD primitives do not meet the definition of generic AEADs. They are
// all specific to TLS and should not be used outside of that context. They must
// be initialized with |EVP_AEAD_CTX_init_with_direction|, are stateful, and may
// not be used concurrently. Any nonces are used as IVs, so they must be
// unpredictable. They only accept an |ad| parameter of length 11 (the standard
// TLS one with length omitted).
OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_cbc_sha1_tls(void);
OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_cbc_sha1_tls_implicit_iv(void);
OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_cbc_sha256_tls(void);
OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_cbc_sha1_tls(void);
OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_cbc_sha1_tls_implicit_iv(void);
OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_cbc_sha256_tls(void);
OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_cbc_sha384_tls(void);
OPENSSL_EXPORT const EVP_AEAD *EVP_aead_des_ede3_cbc_sha1_tls(void);
OPENSSL_EXPORT const EVP_AEAD *EVP_aead_des_ede3_cbc_sha1_tls_implicit_iv(void);
OPENSSL_EXPORT const EVP_AEAD *EVP_aead_null_sha1_tls(void);
// EVP_aead_aes_128_gcm_tls12 is AES-128 in Galois Counter Mode using the TLS
// 1.2 nonce construction.
OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_gcm_tls12(void);
// EVP_aead_aes_256_gcm_tls12 is AES-256 in Galois Counter Mode using the TLS
// 1.2 nonce construction.
OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_gcm_tls12(void);
// EVP_aead_aes_128_gcm_tls13 is AES-128 in Galois Counter Mode using the TLS
// 1.3 nonce construction.
OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_gcm_tls13(void);
// EVP_aead_aes_256_gcm_tls13 is AES-256 in Galois Counter Mode using the TLS
// 1.3 nonce construction.
OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_gcm_tls13(void);
// Obscure functions.
// evp_aead_direction_t denotes the direction of an AEAD operation.
enum evp_aead_direction_t {
evp_aead_open,
evp_aead_seal,
};
// EVP_AEAD_CTX_init_with_direction calls |EVP_AEAD_CTX_init| for normal
// AEADs. For TLS-specific and SSL3-specific AEADs, it initializes |ctx| for a
// given direction.
OPENSSL_EXPORT int EVP_AEAD_CTX_init_with_direction(
EVP_AEAD_CTX *ctx, const EVP_AEAD *aead, const uint8_t *key, size_t key_len,
size_t tag_len, enum evp_aead_direction_t dir);
// EVP_AEAD_CTX_get_iv sets |*out_len| to the length of the IV for |ctx| and
// sets |*out_iv| to point to that many bytes of the current IV. This is only
// meaningful for AEADs with implicit IVs (i.e. CBC mode in TLS 1.0).
//
// It returns one on success or zero on error.
OPENSSL_EXPORT int EVP_AEAD_CTX_get_iv(const EVP_AEAD_CTX *ctx,
const uint8_t **out_iv, size_t *out_len);
// EVP_AEAD_CTX_tag_len computes the exact byte length of the tag written by
// |EVP_AEAD_CTX_seal_scatter| and writes it to |*out_tag_len|. It returns one
// on success or zero on error. |in_len| and |extra_in_len| must equal the
// arguments of the same names passed to |EVP_AEAD_CTX_seal_scatter|.
OPENSSL_EXPORT int EVP_AEAD_CTX_tag_len(const EVP_AEAD_CTX *ctx,
size_t *out_tag_len,
const size_t in_len,
const size_t extra_in_len);
#if defined(__cplusplus)
} // extern C
#if !defined(BORINGSSL_NO_CXX)
extern "C++" {
BSSL_NAMESPACE_BEGIN
using ScopedEVP_AEAD_CTX =
internal::StackAllocated<EVP_AEAD_CTX, void, EVP_AEAD_CTX_zero,
EVP_AEAD_CTX_cleanup>;
BORINGSSL_MAKE_DELETER(EVP_AEAD_CTX, EVP_AEAD_CTX_free)
BSSL_NAMESPACE_END
} // extern C++
#endif
#endif
#endif // OPENSSL_HEADER_AEAD_H