Nagram/TMessagesProj/jni/boringssl/crypto/fipsmodule/aes/asm/vpaes-armv7.pl
2019-12-31 16:08:08 +03:00

1376 lines
46 KiB
Perl
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#! /usr/bin/env perl
# Copyright 2015-2016 The OpenSSL Project Authors. All Rights Reserved.
#
# Licensed under the OpenSSL license (the "License"). You may not use
# this file except in compliance with the License. You can obtain a copy
# in the file LICENSE in the source distribution or at
# https://www.openssl.org/source/license.html
######################################################################
## Constant-time SSSE3 AES core implementation.
## version 0.1
##
## By Mike Hamburg (Stanford University), 2009
## Public domain.
##
## For details see http://shiftleft.org/papers/vector_aes/ and
## http://crypto.stanford.edu/vpaes/.
##
######################################################################
# Adapted from the original x86_64 version and <appro@openssl.org>'s ARMv8
# version.
#
# armv7, aarch64, and x86_64 differ in several ways:
#
# * x86_64 SSSE3 instructions are two-address (destination operand is also a
# source), while NEON is three-address (destination operand is separate from
# two sources).
#
# * aarch64 has 32 SIMD registers available, while x86_64 and armv7 have 16.
#
# * x86_64 instructions can take memory references, while ARM is a load/store
# architecture. This means we sometimes need a spare register.
#
# * aarch64 and x86_64 have 128-bit byte shuffle instructions (tbl and pshufb),
# while armv7 only has a 64-bit byte shuffle (vtbl).
#
# This means this armv7 version must be a mix of both aarch64 and x86_64
# implementations. armv7 and aarch64 have analogous SIMD instructions, so we
# base the instructions on aarch64. However, we cannot use aarch64's register
# allocation. x86_64's register count matches, but x86_64 is two-address.
# vpaes-armv8.pl already accounts for this in the comments, which use
# three-address AVX instructions instead of the original SSSE3 ones. We base
# register usage on these comments, which are preserved in this file.
#
# This means we do not use separate input and output registers as in aarch64 and
# cannot pin as many constants in the preheat functions. However, the load/store
# architecture means we must still deviate from x86_64 in places.
#
# Next, we account for the byte shuffle instructions. vtbl takes 64-bit source
# and destination and 128-bit table. Fortunately, armv7 also allows addressing
# upper and lower halves of each 128-bit register. The lower half of q{N} is
# d{2*N}. The upper half is d{2*N+1}. Instead of the following non-existent
# instruction,
#
# vtbl.8 q0, q1, q2 @ Index each of q2's 16 bytes into q1. Store in q0.
#
# we write:
#
# vtbl.8 d0, q1, d4 @ Index each of d4's 8 bytes into q1. Store in d0.
# vtbl.8 d1, q1, d5 @ Index each of d5's 8 bytes into q1. Store in d1.
#
# For readability, we write d0 and d1 as q0#lo and q0#hi, respectively and
# post-process before outputting. (This is adapted from ghash-armv4.pl.) Note,
# however, that destination (q0) and table (q1) registers may no longer match.
# We adjust the register usage from x86_64 to avoid this. (Unfortunately, the
# two-address pshufb always matched these operands, so this is common.)
#
# This file also runs against the limit of ARMv7's ADR pseudo-instruction. ADR
# expands to an ADD or SUB of the pc register to find an address. That immediate
# must fit in ARM's encoding scheme: 8 bits of constant and 4 bits of rotation.
# This means larger values must be more aligned.
#
# ARM additionally has two encodings, ARM and Thumb mode. Our assembly files may
# use either encoding (do we actually need to support this?). In ARM mode, the
# distances get large enough to require 16-byte alignment. Moving constants
# closer to their use resolves most of this, but common constants in
# _vpaes_consts are used by the whole file. Affected ADR instructions must be
# placed at 8 mod 16 (the pc register is 8 ahead). Instructions with this
# constraint have been commented.
#
# For details on ARM's immediate value encoding scheme, see
# https://alisdair.mcdiarmid.org/arm-immediate-value-encoding/
#
# Finally, a summary of armv7 and aarch64 SIMD syntax differences:
#
# * armv7 prefixes SIMD instructions with 'v', while aarch64 does not.
#
# * armv7 SIMD registers are named like q0 (and d0 for the half-width ones).
# aarch64 names registers like v0, and denotes half-width operations in an
# instruction suffix (see below).
#
# * aarch64 embeds size and lane information in register suffixes. v0.16b is
# 16 bytes, v0.8h is eight u16s, v0.4s is four u32s, and v0.2d is two u64s.
# armv7 embeds the total size in the register name (see above) and the size of
# each element in an instruction suffix, which may look like vmov.i8,
# vshr.u8, or vtbl.8, depending on instruction.
use strict;
my $flavour = shift;
my $output;
while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {}
$0 =~ m/(.*[\/\\])[^\/\\]+$/;
my $dir=$1;
my $xlate;
( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or
( $xlate="${dir}../../../perlasm/arm-xlate.pl" and -f $xlate) or
die "can't locate arm-xlate.pl";
open OUT,"| \"$^X\" $xlate $flavour $output";
*STDOUT=*OUT;
my $code = "";
$code.=<<___;
.syntax unified
.arch armv7-a
.fpu neon
#if defined(__thumb2__)
.thumb
#else
.code 32
#endif
.text
.type _vpaes_consts,%object
.align 7 @ totally strategic alignment
_vpaes_consts:
.Lk_mc_forward: @ mc_forward
.quad 0x0407060500030201, 0x0C0F0E0D080B0A09
.quad 0x080B0A0904070605, 0x000302010C0F0E0D
.quad 0x0C0F0E0D080B0A09, 0x0407060500030201
.quad 0x000302010C0F0E0D, 0x080B0A0904070605
.Lk_mc_backward:@ mc_backward
.quad 0x0605040702010003, 0x0E0D0C0F0A09080B
.quad 0x020100030E0D0C0F, 0x0A09080B06050407
.quad 0x0E0D0C0F0A09080B, 0x0605040702010003
.quad 0x0A09080B06050407, 0x020100030E0D0C0F
.Lk_sr: @ sr
.quad 0x0706050403020100, 0x0F0E0D0C0B0A0908
.quad 0x030E09040F0A0500, 0x0B06010C07020D08
.quad 0x0F060D040B020900, 0x070E050C030A0108
.quad 0x0B0E0104070A0D00, 0x0306090C0F020508
@
@ "Hot" constants
@
.Lk_inv: @ inv, inva
.quad 0x0E05060F0D080180, 0x040703090A0B0C02
.quad 0x01040A060F0B0780, 0x030D0E0C02050809
.Lk_ipt: @ input transform (lo, hi)
.quad 0xC2B2E8985A2A7000, 0xCABAE09052227808
.quad 0x4C01307D317C4D00, 0xCD80B1FCB0FDCC81
.Lk_sbo: @ sbou, sbot
.quad 0xD0D26D176FBDC700, 0x15AABF7AC502A878
.quad 0xCFE474A55FBB6A00, 0x8E1E90D1412B35FA
.Lk_sb1: @ sb1u, sb1t
.quad 0x3618D415FAE22300, 0x3BF7CCC10D2ED9EF
.quad 0xB19BE18FCB503E00, 0xA5DF7A6E142AF544
.Lk_sb2: @ sb2u, sb2t
.quad 0x69EB88400AE12900, 0xC2A163C8AB82234A
.quad 0xE27A93C60B712400, 0x5EB7E955BC982FCD
.asciz "Vector Permutation AES for ARMv7 NEON, Mike Hamburg (Stanford University)"
.size _vpaes_consts,.-_vpaes_consts
.align 6
___
{
my ($inp,$out,$key) = map("r$_", (0..2));
my ($invlo,$invhi) = map("q$_", (10..11));
my ($sb1u,$sb1t,$sb2u,$sb2t) = map("q$_", (12..15));
$code.=<<___;
@@
@@ _aes_preheat
@@
@@ Fills q9-q15 as specified below.
@@
.type _vpaes_preheat,%function
.align 4
_vpaes_preheat:
adr r10, .Lk_inv
vmov.i8 q9, #0x0f @ .Lk_s0F
vld1.64 {q10,q11}, [r10]! @ .Lk_inv
add r10, r10, #64 @ Skip .Lk_ipt, .Lk_sbo
vld1.64 {q12,q13}, [r10]! @ .Lk_sb1
vld1.64 {q14,q15}, [r10] @ .Lk_sb2
bx lr
@@
@@ _aes_encrypt_core
@@
@@ AES-encrypt q0.
@@
@@ Inputs:
@@ q0 = input
@@ q9-q15 as in _vpaes_preheat
@@ [$key] = scheduled keys
@@
@@ Output in q0
@@ Clobbers q1-q5, r8-r11
@@ Preserves q6-q8 so you get some local vectors
@@
@@
.type _vpaes_encrypt_core,%function
.align 4
_vpaes_encrypt_core:
mov r9, $key
ldr r8, [$key,#240] @ pull rounds
adr r11, .Lk_ipt
@ vmovdqa .Lk_ipt(%rip), %xmm2 # iptlo
@ vmovdqa .Lk_ipt+16(%rip), %xmm3 # ipthi
vld1.64 {q2, q3}, [r11]
adr r11, .Lk_mc_forward+16
vld1.64 {q5}, [r9]! @ vmovdqu (%r9), %xmm5 # round0 key
vand q1, q0, q9 @ vpand %xmm9, %xmm0, %xmm1
vshr.u8 q0, q0, #4 @ vpsrlb \$4, %xmm0, %xmm0
vtbl.8 q1#lo, {q2}, q1#lo @ vpshufb %xmm1, %xmm2, %xmm1
vtbl.8 q1#hi, {q2}, q1#hi
vtbl.8 q2#lo, {q3}, q0#lo @ vpshufb %xmm0, %xmm3, %xmm2
vtbl.8 q2#hi, {q3}, q0#hi
veor q0, q1, q5 @ vpxor %xmm5, %xmm1, %xmm0
veor q0, q0, q2 @ vpxor %xmm2, %xmm0, %xmm0
@ .Lenc_entry ends with a bnz instruction which is normally paired with
@ subs in .Lenc_loop.
tst r8, r8
b .Lenc_entry
.align 4
.Lenc_loop:
@ middle of middle round
add r10, r11, #0x40
vtbl.8 q4#lo, {$sb1t}, q2#lo @ vpshufb %xmm2, %xmm13, %xmm4 # 4 = sb1u
vtbl.8 q4#hi, {$sb1t}, q2#hi
vld1.64 {q1}, [r11]! @ vmovdqa -0x40(%r11,%r10), %xmm1 # .Lk_mc_forward[]
vtbl.8 q0#lo, {$sb1u}, q3#lo @ vpshufb %xmm3, %xmm12, %xmm0 # 0 = sb1t
vtbl.8 q0#hi, {$sb1u}, q3#hi
veor q4, q4, q5 @ vpxor %xmm5, %xmm4, %xmm4 # 4 = sb1u + k
vtbl.8 q5#lo, {$sb2t}, q2#lo @ vpshufb %xmm2, %xmm15, %xmm5 # 4 = sb2u
vtbl.8 q5#hi, {$sb2t}, q2#hi
veor q0, q0, q4 @ vpxor %xmm4, %xmm0, %xmm0 # 0 = A
vtbl.8 q2#lo, {$sb2u}, q3#lo @ vpshufb %xmm3, %xmm14, %xmm2 # 2 = sb2t
vtbl.8 q2#hi, {$sb2u}, q3#hi
vld1.64 {q4}, [r10] @ vmovdqa (%r11,%r10), %xmm4 # .Lk_mc_backward[]
vtbl.8 q3#lo, {q0}, q1#lo @ vpshufb %xmm1, %xmm0, %xmm3 # 0 = B
vtbl.8 q3#hi, {q0}, q1#hi
veor q2, q2, q5 @ vpxor %xmm5, %xmm2, %xmm2 # 2 = 2A
@ Write to q5 instead of q0, so the table and destination registers do
@ not overlap.
vtbl.8 q5#lo, {q0}, q4#lo @ vpshufb %xmm4, %xmm0, %xmm0 # 3 = D
vtbl.8 q5#hi, {q0}, q4#hi
veor q3, q3, q2 @ vpxor %xmm2, %xmm3, %xmm3 # 0 = 2A+B
vtbl.8 q4#lo, {q3}, q1#lo @ vpshufb %xmm1, %xmm3, %xmm4 # 0 = 2B+C
vtbl.8 q4#hi, {q3}, q1#hi
@ Here we restore the original q0/q5 usage.
veor q0, q5, q3 @ vpxor %xmm3, %xmm0, %xmm0 # 3 = 2A+B+D
and r11, r11, #~(1<<6) @ and \$0x30, %r11 # ... mod 4
veor q0, q0, q4 @ vpxor %xmm4, %xmm0, %xmm0 # 0 = 2A+3B+C+D
subs r8, r8, #1 @ nr--
.Lenc_entry:
@ top of round
vand q1, q0, q9 @ vpand %xmm0, %xmm9, %xmm1 # 0 = k
vshr.u8 q0, q0, #4 @ vpsrlb \$4, %xmm0, %xmm0 # 1 = i
vtbl.8 q5#lo, {$invhi}, q1#lo @ vpshufb %xmm1, %xmm11, %xmm5 # 2 = a/k
vtbl.8 q5#hi, {$invhi}, q1#hi
veor q1, q1, q0 @ vpxor %xmm0, %xmm1, %xmm1 # 0 = j
vtbl.8 q3#lo, {$invlo}, q0#lo @ vpshufb %xmm0, %xmm10, %xmm3 # 3 = 1/i
vtbl.8 q3#hi, {$invlo}, q0#hi
vtbl.8 q4#lo, {$invlo}, q1#lo @ vpshufb %xmm1, %xmm10, %xmm4 # 4 = 1/j
vtbl.8 q4#hi, {$invlo}, q1#hi
veor q3, q3, q5 @ vpxor %xmm5, %xmm3, %xmm3 # 3 = iak = 1/i + a/k
veor q4, q4, q5 @ vpxor %xmm5, %xmm4, %xmm4 # 4 = jak = 1/j + a/k
vtbl.8 q2#lo, {$invlo}, q3#lo @ vpshufb %xmm3, %xmm10, %xmm2 # 2 = 1/iak
vtbl.8 q2#hi, {$invlo}, q3#hi
vtbl.8 q3#lo, {$invlo}, q4#lo @ vpshufb %xmm4, %xmm10, %xmm3 # 3 = 1/jak
vtbl.8 q3#hi, {$invlo}, q4#hi
veor q2, q2, q1 @ vpxor %xmm1, %xmm2, %xmm2 # 2 = io
veor q3, q3, q0 @ vpxor %xmm0, %xmm3, %xmm3 # 3 = jo
vld1.64 {q5}, [r9]! @ vmovdqu (%r9), %xmm5
bne .Lenc_loop
@ middle of last round
add r10, r11, #0x80
adr r11, .Lk_sbo
@ Read to q1 instead of q4, so the vtbl.8 instruction below does not
@ overlap table and destination registers.
vld1.64 {q1}, [r11]! @ vmovdqa -0x60(%r10), %xmm4 # 3 : sbou
vld1.64 {q0}, [r11] @ vmovdqa -0x50(%r10), %xmm0 # 0 : sbot .Lk_sbo+16
vtbl.8 q4#lo, {q1}, q2#lo @ vpshufb %xmm2, %xmm4, %xmm4 # 4 = sbou
vtbl.8 q4#hi, {q1}, q2#hi
vld1.64 {q1}, [r10] @ vmovdqa 0x40(%r11,%r10), %xmm1 # .Lk_sr[]
@ Write to q2 instead of q0 below, to avoid overlapping table and
@ destination registers.
vtbl.8 q2#lo, {q0}, q3#lo @ vpshufb %xmm3, %xmm0, %xmm0 # 0 = sb1t
vtbl.8 q2#hi, {q0}, q3#hi
veor q4, q4, q5 @ vpxor %xmm5, %xmm4, %xmm4 # 4 = sb1u + k
veor q2, q2, q4 @ vpxor %xmm4, %xmm0, %xmm0 # 0 = A
@ Here we restore the original q0/q2 usage.
vtbl.8 q0#lo, {q2}, q1#lo @ vpshufb %xmm1, %xmm0, %xmm0
vtbl.8 q0#hi, {q2}, q1#hi
bx lr
.size _vpaes_encrypt_core,.-_vpaes_encrypt_core
.globl vpaes_encrypt
.type vpaes_encrypt,%function
.align 4
vpaes_encrypt:
@ _vpaes_encrypt_core uses r8-r11. Round up to r7-r11 to maintain stack
@ alignment.
stmdb sp!, {r7-r11,lr}
@ _vpaes_encrypt_core uses q4-q5 (d8-d11), which are callee-saved.
vstmdb sp!, {d8-d11}
vld1.64 {q0}, [$inp]
bl _vpaes_preheat
bl _vpaes_encrypt_core
vst1.64 {q0}, [$out]
vldmia sp!, {d8-d11}
ldmia sp!, {r7-r11, pc} @ return
.size vpaes_encrypt,.-vpaes_encrypt
@
@ Decryption stuff
@
.type _vpaes_decrypt_consts,%object
.align 4
.Lk_dipt: @ decryption input transform
.quad 0x0F505B040B545F00, 0x154A411E114E451A
.quad 0x86E383E660056500, 0x12771772F491F194
.Lk_dsbo: @ decryption sbox final output
.quad 0x1387EA537EF94000, 0xC7AA6DB9D4943E2D
.quad 0x12D7560F93441D00, 0xCA4B8159D8C58E9C
.Lk_dsb9: @ decryption sbox output *9*u, *9*t
.quad 0x851C03539A86D600, 0xCAD51F504F994CC9
.quad 0xC03B1789ECD74900, 0x725E2C9EB2FBA565
.Lk_dsbd: @ decryption sbox output *D*u, *D*t
.quad 0x7D57CCDFE6B1A200, 0xF56E9B13882A4439
.quad 0x3CE2FAF724C6CB00, 0x2931180D15DEEFD3
.Lk_dsbb: @ decryption sbox output *B*u, *B*t
.quad 0xD022649296B44200, 0x602646F6B0F2D404
.quad 0xC19498A6CD596700, 0xF3FF0C3E3255AA6B
.Lk_dsbe: @ decryption sbox output *E*u, *E*t
.quad 0x46F2929626D4D000, 0x2242600464B4F6B0
.quad 0x0C55A6CDFFAAC100, 0x9467F36B98593E32
.size _vpaes_decrypt_consts,.-_vpaes_decrypt_consts
@@
@@ Decryption core
@@
@@ Same API as encryption core, except it clobbers q12-q15 rather than using
@@ the values from _vpaes_preheat. q9-q11 must still be set from
@@ _vpaes_preheat.
@@
.type _vpaes_decrypt_core,%function
.align 4
_vpaes_decrypt_core:
mov r9, $key
ldr r8, [$key,#240] @ pull rounds
@ This function performs shuffles with various constants. The x86_64
@ version loads them on-demand into %xmm0-%xmm5. This does not work well
@ for ARMv7 because those registers are shuffle destinations. The ARMv8
@ version preloads those constants into registers, but ARMv7 has half
@ the registers to work with. Instead, we load them on-demand into
@ q12-q15, registers normally use for preloaded constants. This is fine
@ because decryption doesn't use those constants. The values are
@ constant, so this does not interfere with potential 2x optimizations.
adr r7, .Lk_dipt
vld1.64 {q12,q13}, [r7] @ vmovdqa .Lk_dipt(%rip), %xmm2 # iptlo
lsl r11, r8, #4 @ mov %rax, %r11; shl \$4, %r11
eor r11, r11, #0x30 @ xor \$0x30, %r11
adr r10, .Lk_sr
and r11, r11, #0x30 @ and \$0x30, %r11
add r11, r11, r10
adr r10, .Lk_mc_forward+48
vld1.64 {q4}, [r9]! @ vmovdqu (%r9), %xmm4 # round0 key
vand q1, q0, q9 @ vpand %xmm9, %xmm0, %xmm1
vshr.u8 q0, q0, #4 @ vpsrlb \$4, %xmm0, %xmm0
vtbl.8 q2#lo, {q12}, q1#lo @ vpshufb %xmm1, %xmm2, %xmm2
vtbl.8 q2#hi, {q12}, q1#hi
vld1.64 {q5}, [r10] @ vmovdqa .Lk_mc_forward+48(%rip), %xmm5
@ vmovdqa .Lk_dipt+16(%rip), %xmm1 # ipthi
vtbl.8 q0#lo, {q13}, q0#lo @ vpshufb %xmm0, %xmm1, %xmm0
vtbl.8 q0#hi, {q13}, q0#hi
veor q2, q2, q4 @ vpxor %xmm4, %xmm2, %xmm2
veor q0, q0, q2 @ vpxor %xmm2, %xmm0, %xmm0
@ .Ldec_entry ends with a bnz instruction which is normally paired with
@ subs in .Ldec_loop.
tst r8, r8
b .Ldec_entry
.align 4
.Ldec_loop:
@
@ Inverse mix columns
@
@ We load .Lk_dsb* into q12-q15 on-demand. See the comment at the top of
@ the function.
adr r10, .Lk_dsb9
vld1.64 {q12,q13}, [r10]! @ vmovdqa -0x20(%r10),%xmm4 # 4 : sb9u
@ vmovdqa -0x10(%r10),%xmm1 # 0 : sb9t
@ Load sbd* ahead of time.
vld1.64 {q14,q15}, [r10]! @ vmovdqa 0x00(%r10),%xmm4 # 4 : sbdu
@ vmovdqa 0x10(%r10),%xmm1 # 0 : sbdt
vtbl.8 q4#lo, {q12}, q2#lo @ vpshufb %xmm2, %xmm4, %xmm4 # 4 = sb9u
vtbl.8 q4#hi, {q12}, q2#hi
vtbl.8 q1#lo, {q13}, q3#lo @ vpshufb %xmm3, %xmm1, %xmm1 # 0 = sb9t
vtbl.8 q1#hi, {q13}, q3#hi
veor q0, q4, q0 @ vpxor %xmm4, %xmm0, %xmm0
veor q0, q0, q1 @ vpxor %xmm1, %xmm0, %xmm0 # 0 = ch
@ Load sbb* ahead of time.
vld1.64 {q12,q13}, [r10]! @ vmovdqa 0x20(%r10),%xmm4 # 4 : sbbu
@ vmovdqa 0x30(%r10),%xmm1 # 0 : sbbt
vtbl.8 q4#lo, {q14}, q2#lo @ vpshufb %xmm2, %xmm4, %xmm4 # 4 = sbdu
vtbl.8 q4#hi, {q14}, q2#hi
@ Write to q1 instead of q0, so the table and destination registers do
@ not overlap.
vtbl.8 q1#lo, {q0}, q5#lo @ vpshufb %xmm5, %xmm0, %xmm0 # MC ch
vtbl.8 q1#hi, {q0}, q5#hi
@ Here we restore the original q0/q1 usage. This instruction is
@ reordered from the ARMv8 version so we do not clobber the vtbl.8
@ below.
veor q0, q1, q4 @ vpxor %xmm4, %xmm0, %xmm0 # 4 = ch
vtbl.8 q1#lo, {q15}, q3#lo @ vpshufb %xmm3, %xmm1, %xmm1 # 0 = sbdt
vtbl.8 q1#hi, {q15}, q3#hi
@ vmovdqa 0x20(%r10), %xmm4 # 4 : sbbu
veor q0, q0, q1 @ vpxor %xmm1, %xmm0, %xmm0 # 0 = ch
@ vmovdqa 0x30(%r10), %xmm1 # 0 : sbbt
@ Load sbd* ahead of time.
vld1.64 {q14,q15}, [r10]! @ vmovdqa 0x40(%r10),%xmm4 # 4 : sbeu
@ vmovdqa 0x50(%r10),%xmm1 # 0 : sbet
vtbl.8 q4#lo, {q12}, q2#lo @ vpshufb %xmm2, %xmm4, %xmm4 # 4 = sbbu
vtbl.8 q4#hi, {q12}, q2#hi
@ Write to q1 instead of q0, so the table and destination registers do
@ not overlap.
vtbl.8 q1#lo, {q0}, q5#lo @ vpshufb %xmm5, %xmm0, %xmm0 # MC ch
vtbl.8 q1#hi, {q0}, q5#hi
@ Here we restore the original q0/q1 usage. This instruction is
@ reordered from the ARMv8 version so we do not clobber the vtbl.8
@ below.
veor q0, q1, q4 @ vpxor %xmm4, %xmm0, %xmm0 # 4 = ch
vtbl.8 q1#lo, {q13}, q3#lo @ vpshufb %xmm3, %xmm1, %xmm1 # 0 = sbbt
vtbl.8 q1#hi, {q13}, q3#hi
veor q0, q0, q1 @ vpxor %xmm1, %xmm0, %xmm0 # 0 = ch
vtbl.8 q4#lo, {q14}, q2#lo @ vpshufb %xmm2, %xmm4, %xmm4 # 4 = sbeu
vtbl.8 q4#hi, {q14}, q2#hi
@ Write to q1 instead of q0, so the table and destination registers do
@ not overlap.
vtbl.8 q1#lo, {q0}, q5#lo @ vpshufb %xmm5, %xmm0, %xmm0 # MC ch
vtbl.8 q1#hi, {q0}, q5#hi
@ Here we restore the original q0/q1 usage. This instruction is
@ reordered from the ARMv8 version so we do not clobber the vtbl.8
@ below.
veor q0, q1, q4 @ vpxor %xmm4, %xmm0, %xmm0 # 4 = ch
vtbl.8 q1#lo, {q15}, q3#lo @ vpshufb %xmm3, %xmm1, %xmm1 # 0 = sbet
vtbl.8 q1#hi, {q15}, q3#hi
vext.8 q5, q5, q5, #12 @ vpalignr \$12, %xmm5, %xmm5, %xmm5
veor q0, q0, q1 @ vpxor %xmm1, %xmm0, %xmm0 # 0 = ch
subs r8, r8, #1 @ sub \$1,%rax # nr--
.Ldec_entry:
@ top of round
vand q1, q0, q9 @ vpand %xmm9, %xmm0, %xmm1 # 0 = k
vshr.u8 q0, q0, #4 @ vpsrlb \$4, %xmm0, %xmm0 # 1 = i
vtbl.8 q2#lo, {$invhi}, q1#lo @ vpshufb %xmm1, %xmm11, %xmm2 # 2 = a/k
vtbl.8 q2#hi, {$invhi}, q1#hi
veor q1, q1, q0 @ vpxor %xmm0, %xmm1, %xmm1 # 0 = j
vtbl.8 q3#lo, {$invlo}, q0#lo @ vpshufb %xmm0, %xmm10, %xmm3 # 3 = 1/i
vtbl.8 q3#hi, {$invlo}, q0#hi
vtbl.8 q4#lo, {$invlo}, q1#lo @ vpshufb %xmm1, %xmm10, %xmm4 # 4 = 1/j
vtbl.8 q4#hi, {$invlo}, q1#hi
veor q3, q3, q2 @ vpxor %xmm2, %xmm3, %xmm3 # 3 = iak = 1/i + a/k
veor q4, q4, q2 @ vpxor %xmm2, %xmm4, %xmm4 # 4 = jak = 1/j + a/k
vtbl.8 q2#lo, {$invlo}, q3#lo @ vpshufb %xmm3, %xmm10, %xmm2 # 2 = 1/iak
vtbl.8 q2#hi, {$invlo}, q3#hi
vtbl.8 q3#lo, {$invlo}, q4#lo @ vpshufb %xmm4, %xmm10, %xmm3 # 3 = 1/jak
vtbl.8 q3#hi, {$invlo}, q4#hi
veor q2, q2, q1 @ vpxor %xmm1, %xmm2, %xmm2 # 2 = io
veor q3, q3, q0 @ vpxor %xmm0, %xmm3, %xmm3 # 3 = jo
vld1.64 {q0}, [r9]! @ vmovdqu (%r9), %xmm0
bne .Ldec_loop
@ middle of last round
adr r10, .Lk_dsbo
@ Write to q1 rather than q4 to avoid overlapping table and destination.
vld1.64 {q1}, [r10]! @ vmovdqa 0x60(%r10), %xmm4 # 3 : sbou
vtbl.8 q4#lo, {q1}, q2#lo @ vpshufb %xmm2, %xmm4, %xmm4 # 4 = sbou
vtbl.8 q4#hi, {q1}, q2#hi
@ Write to q2 rather than q1 to avoid overlapping table and destination.
vld1.64 {q2}, [r10] @ vmovdqa 0x70(%r10), %xmm1 # 0 : sbot
vtbl.8 q1#lo, {q2}, q3#lo @ vpshufb %xmm3, %xmm1, %xmm1 # 0 = sb1t
vtbl.8 q1#hi, {q2}, q3#hi
vld1.64 {q2}, [r11] @ vmovdqa -0x160(%r11), %xmm2 # .Lk_sr-.Lk_dsbd=-0x160
veor q4, q4, q0 @ vpxor %xmm0, %xmm4, %xmm4 # 4 = sb1u + k
@ Write to q1 rather than q0 so the table and destination registers
@ below do not overlap.
veor q1, q1, q4 @ vpxor %xmm4, %xmm1, %xmm0 # 0 = A
vtbl.8 q0#lo, {q1}, q2#lo @ vpshufb %xmm2, %xmm0, %xmm0
vtbl.8 q0#hi, {q1}, q2#hi
bx lr
.size _vpaes_decrypt_core,.-_vpaes_decrypt_core
.globl vpaes_decrypt
.type vpaes_decrypt,%function
.align 4
vpaes_decrypt:
@ _vpaes_decrypt_core uses r7-r11.
stmdb sp!, {r7-r11,lr}
@ _vpaes_decrypt_core uses q4-q5 (d8-d11), which are callee-saved.
vstmdb sp!, {d8-d11}
vld1.64 {q0}, [$inp]
bl _vpaes_preheat
bl _vpaes_decrypt_core
vst1.64 {q0}, [$out]
vldmia sp!, {d8-d11}
ldmia sp!, {r7-r11, pc} @ return
.size vpaes_decrypt,.-vpaes_decrypt
___
}
{
my ($inp,$bits,$out,$dir)=("r0","r1","r2","r3");
my ($rcon,$s0F,$invlo,$invhi,$s63) = map("q$_",(8..12));
$code.=<<___;
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@ @@
@@ AES key schedule @@
@@ @@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@ This function diverges from both x86_64 and armv7 in which constants are
@ pinned. x86_64 has a common preheat function for all operations. aarch64
@ separates them because it has enough registers to pin nearly all constants.
@ armv7 does not have enough registers, but needing explicit loads and stores
@ also complicates using x86_64's register allocation directly.
@
@ We pin some constants for convenience and leave q14 and q15 free to load
@ others on demand.
@
@ Key schedule constants
@
.type _vpaes_key_consts,%object
.align 4
_vpaes_key_consts:
.Lk_dksd: @ decryption key schedule: invskew x*D
.quad 0xFEB91A5DA3E44700, 0x0740E3A45A1DBEF9
.quad 0x41C277F4B5368300, 0x5FDC69EAAB289D1E
.Lk_dksb: @ decryption key schedule: invskew x*B
.quad 0x9A4FCA1F8550D500, 0x03D653861CC94C99
.quad 0x115BEDA7B6FC4A00, 0xD993256F7E3482C8
.Lk_dkse: @ decryption key schedule: invskew x*E + 0x63
.quad 0xD5031CCA1FC9D600, 0x53859A4C994F5086
.quad 0xA23196054FDC7BE8, 0xCD5EF96A20B31487
.Lk_dks9: @ decryption key schedule: invskew x*9
.quad 0xB6116FC87ED9A700, 0x4AED933482255BFC
.quad 0x4576516227143300, 0x8BB89FACE9DAFDCE
.Lk_rcon: @ rcon
.quad 0x1F8391B9AF9DEEB6, 0x702A98084D7C7D81
.Lk_opt: @ output transform
.quad 0xFF9F4929D6B66000, 0xF7974121DEBE6808
.quad 0x01EDBD5150BCEC00, 0xE10D5DB1B05C0CE0
.Lk_deskew: @ deskew tables: inverts the sbox's "skew"
.quad 0x07E4A34047A4E300, 0x1DFEB95A5DBEF91A
.quad 0x5F36B5DC83EA6900, 0x2841C2ABF49D1E77
.size _vpaes_key_consts,.-_vpaes_key_consts
.type _vpaes_key_preheat,%function
.align 4
_vpaes_key_preheat:
adr r11, .Lk_rcon
vmov.i8 $s63, #0x5b @ .Lk_s63
adr r10, .Lk_inv @ Must be aligned to 8 mod 16.
vmov.i8 $s0F, #0x0f @ .Lk_s0F
vld1.64 {$invlo,$invhi}, [r10] @ .Lk_inv
vld1.64 {$rcon}, [r11] @ .Lk_rcon
bx lr
.size _vpaes_key_preheat,.-_vpaes_key_preheat
.type _vpaes_schedule_core,%function
.align 4
_vpaes_schedule_core:
@ We only need to save lr, but ARM requires an 8-byte stack alignment,
@ so save an extra register.
stmdb sp!, {r3,lr}
bl _vpaes_key_preheat @ load the tables
adr r11, .Lk_ipt @ Must be aligned to 8 mod 16.
vld1.64 {q0}, [$inp]! @ vmovdqu (%rdi), %xmm0 # load key (unaligned)
@ input transform
@ Use q4 here rather than q3 so .Lschedule_am_decrypting does not
@ overlap table and destination.
vmov q4, q0 @ vmovdqa %xmm0, %xmm3
bl _vpaes_schedule_transform
adr r10, .Lk_sr @ Must be aligned to 8 mod 16.
vmov q7, q0 @ vmovdqa %xmm0, %xmm7
add r8, r8, r10
tst $dir, $dir
bne .Lschedule_am_decrypting
@ encrypting, output zeroth round key after transform
vst1.64 {q0}, [$out] @ vmovdqu %xmm0, (%rdx)
b .Lschedule_go
.Lschedule_am_decrypting:
@ decrypting, output zeroth round key after shiftrows
vld1.64 {q1}, [r8] @ vmovdqa (%r8,%r10), %xmm1
vtbl.8 q3#lo, {q4}, q1#lo @ vpshufb %xmm1, %xmm3, %xmm3
vtbl.8 q3#hi, {q4}, q1#hi
vst1.64 {q3}, [$out] @ vmovdqu %xmm3, (%rdx)
eor r8, r8, #0x30 @ xor \$0x30, %r8
.Lschedule_go:
cmp $bits, #192 @ cmp \$192, %esi
bhi .Lschedule_256
beq .Lschedule_192
@ 128: fall though
@@
@@ .schedule_128
@@
@@ 128-bit specific part of key schedule.
@@
@@ This schedule is really simple, because all its parts
@@ are accomplished by the subroutines.
@@
.Lschedule_128:
mov $inp, #10 @ mov \$10, %esi
.Loop_schedule_128:
bl _vpaes_schedule_round
subs $inp, $inp, #1 @ dec %esi
beq .Lschedule_mangle_last
bl _vpaes_schedule_mangle @ write output
b .Loop_schedule_128
@@
@@ .aes_schedule_192
@@
@@ 192-bit specific part of key schedule.
@@
@@ The main body of this schedule is the same as the 128-bit
@@ schedule, but with more smearing. The long, high side is
@@ stored in q7 as before, and the short, low side is in
@@ the high bits of q6.
@@
@@ This schedule is somewhat nastier, however, because each
@@ round produces 192 bits of key material, or 1.5 round keys.
@@ Therefore, on each cycle we do 2 rounds and produce 3 round
@@ keys.
@@
.align 4
.Lschedule_192:
sub $inp, $inp, #8
vld1.64 {q0}, [$inp] @ vmovdqu 8(%rdi),%xmm0 # load key part 2 (very unaligned)
bl _vpaes_schedule_transform @ input transform
vmov q6, q0 @ vmovdqa %xmm0, %xmm6 # save short part
vmov.i8 q6#lo, #0 @ vpxor %xmm4, %xmm4, %xmm4 # clear 4
@ vmovhlps %xmm4, %xmm6, %xmm6 # clobber low side with zeros
mov $inp, #4 @ mov \$4, %esi
.Loop_schedule_192:
bl _vpaes_schedule_round
vext.8 q0, q6, q0, #8 @ vpalignr \$8,%xmm6,%xmm0,%xmm0
bl _vpaes_schedule_mangle @ save key n
bl _vpaes_schedule_192_smear
bl _vpaes_schedule_mangle @ save key n+1
bl _vpaes_schedule_round
subs $inp, $inp, #1 @ dec %esi
beq .Lschedule_mangle_last
bl _vpaes_schedule_mangle @ save key n+2
bl _vpaes_schedule_192_smear
b .Loop_schedule_192
@@
@@ .aes_schedule_256
@@
@@ 256-bit specific part of key schedule.
@@
@@ The structure here is very similar to the 128-bit
@@ schedule, but with an additional "low side" in
@@ q6. The low side's rounds are the same as the
@@ high side's, except no rcon and no rotation.
@@
.align 4
.Lschedule_256:
vld1.64 {q0}, [$inp] @ vmovdqu 16(%rdi),%xmm0 # load key part 2 (unaligned)
bl _vpaes_schedule_transform @ input transform
mov $inp, #7 @ mov \$7, %esi
.Loop_schedule_256:
bl _vpaes_schedule_mangle @ output low result
vmov q6, q0 @ vmovdqa %xmm0, %xmm6 # save cur_lo in xmm6
@ high round
bl _vpaes_schedule_round
subs $inp, $inp, #1 @ dec %esi
beq .Lschedule_mangle_last
bl _vpaes_schedule_mangle
@ low round. swap xmm7 and xmm6
vdup.32 q0, q0#hi[1] @ vpshufd \$0xFF, %xmm0, %xmm0
vmov.i8 q4, #0
vmov q5, q7 @ vmovdqa %xmm7, %xmm5
vmov q7, q6 @ vmovdqa %xmm6, %xmm7
bl _vpaes_schedule_low_round
vmov q7, q5 @ vmovdqa %xmm5, %xmm7
b .Loop_schedule_256
@@
@@ .aes_schedule_mangle_last
@@
@@ Mangler for last round of key schedule
@@ Mangles q0
@@ when encrypting, outputs out(q0) ^ 63
@@ when decrypting, outputs unskew(q0)
@@
@@ Always called right before return... jumps to cleanup and exits
@@
.align 4
.Lschedule_mangle_last:
@ schedule last round key from xmm0
adr r11, .Lk_deskew @ lea .Lk_deskew(%rip),%r11 # prepare to deskew
tst $dir, $dir
bne .Lschedule_mangle_last_dec
@ encrypting
vld1.64 {q1}, [r8] @ vmovdqa (%r8,%r10),%xmm1
adr r11, .Lk_opt @ lea .Lk_opt(%rip), %r11 # prepare to output transform
add $out, $out, #32 @ add \$32, %rdx
vmov q2, q0
vtbl.8 q0#lo, {q2}, q1#lo @ vpshufb %xmm1, %xmm0, %xmm0 # output permute
vtbl.8 q0#hi, {q2}, q1#hi
.Lschedule_mangle_last_dec:
sub $out, $out, #16 @ add \$-16, %rdx
veor q0, q0, $s63 @ vpxor .Lk_s63(%rip), %xmm0, %xmm0
bl _vpaes_schedule_transform @ output transform
vst1.64 {q0}, [$out] @ vmovdqu %xmm0, (%rdx) # save last key
@ cleanup
veor q0, q0, q0 @ vpxor %xmm0, %xmm0, %xmm0
veor q1, q1, q1 @ vpxor %xmm1, %xmm1, %xmm1
veor q2, q2, q2 @ vpxor %xmm2, %xmm2, %xmm2
veor q3, q3, q3 @ vpxor %xmm3, %xmm3, %xmm3
veor q4, q4, q4 @ vpxor %xmm4, %xmm4, %xmm4
veor q5, q5, q5 @ vpxor %xmm5, %xmm5, %xmm5
veor q6, q6, q6 @ vpxor %xmm6, %xmm6, %xmm6
veor q7, q7, q7 @ vpxor %xmm7, %xmm7, %xmm7
ldmia sp!, {r3,pc} @ return
.size _vpaes_schedule_core,.-_vpaes_schedule_core
@@
@@ .aes_schedule_192_smear
@@
@@ Smear the short, low side in the 192-bit key schedule.
@@
@@ Inputs:
@@ q7: high side, b a x y
@@ q6: low side, d c 0 0
@@
@@ Outputs:
@@ q6: b+c+d b+c 0 0
@@ q0: b+c+d b+c b a
@@
.type _vpaes_schedule_192_smear,%function
.align 4
_vpaes_schedule_192_smear:
vmov.i8 q1, #0
vdup.32 q0, q7#hi[1]
vshl.i64 q1, q6, #32 @ vpshufd \$0x80, %xmm6, %xmm1 # d c 0 0 -> c 0 0 0
vmov q0#lo, q7#hi @ vpshufd \$0xFE, %xmm7, %xmm0 # b a _ _ -> b b b a
veor q6, q6, q1 @ vpxor %xmm1, %xmm6, %xmm6 # -> c+d c 0 0
veor q1, q1, q1 @ vpxor %xmm1, %xmm1, %xmm1
veor q6, q6, q0 @ vpxor %xmm0, %xmm6, %xmm6 # -> b+c+d b+c b a
vmov q0, q6 @ vmovdqa %xmm6, %xmm0
vmov q6#lo, q1#lo @ vmovhlps %xmm1, %xmm6, %xmm6 # clobber low side with zeros
bx lr
.size _vpaes_schedule_192_smear,.-_vpaes_schedule_192_smear
@@
@@ .aes_schedule_round
@@
@@ Runs one main round of the key schedule on q0, q7
@@
@@ Specifically, runs subbytes on the high dword of q0
@@ then rotates it by one byte and xors into the low dword of
@@ q7.
@@
@@ Adds rcon from low byte of q8, then rotates q8 for
@@ next rcon.
@@
@@ Smears the dwords of q7 by xoring the low into the
@@ second low, result into third, result into highest.
@@
@@ Returns results in q7 = q0.
@@ Clobbers q1-q4, r11.
@@
.type _vpaes_schedule_round,%function
.align 4
_vpaes_schedule_round:
@ extract rcon from xmm8
vmov.i8 q4, #0 @ vpxor %xmm4, %xmm4, %xmm4
vext.8 q1, $rcon, q4, #15 @ vpalignr \$15, %xmm8, %xmm4, %xmm1
vext.8 $rcon, $rcon, $rcon, #15 @ vpalignr \$15, %xmm8, %xmm8, %xmm8
veor q7, q7, q1 @ vpxor %xmm1, %xmm7, %xmm7
@ rotate
vdup.32 q0, q0#hi[1] @ vpshufd \$0xFF, %xmm0, %xmm0
vext.8 q0, q0, q0, #1 @ vpalignr \$1, %xmm0, %xmm0, %xmm0
@ fall through...
@ low round: same as high round, but no rotation and no rcon.
_vpaes_schedule_low_round:
@ The x86_64 version pins .Lk_sb1 in %xmm13 and .Lk_sb1+16 in %xmm12.
@ We pin other values in _vpaes_key_preheat, so load them now.
adr r11, .Lk_sb1
vld1.64 {q14,q15}, [r11]
@ smear xmm7
vext.8 q1, q4, q7, #12 @ vpslldq \$4, %xmm7, %xmm1
veor q7, q7, q1 @ vpxor %xmm1, %xmm7, %xmm7
vext.8 q4, q4, q7, #8 @ vpslldq \$8, %xmm7, %xmm4
@ subbytes
vand q1, q0, $s0F @ vpand %xmm9, %xmm0, %xmm1 # 0 = k
vshr.u8 q0, q0, #4 @ vpsrlb \$4, %xmm0, %xmm0 # 1 = i
veor q7, q7, q4 @ vpxor %xmm4, %xmm7, %xmm7
vtbl.8 q2#lo, {$invhi}, q1#lo @ vpshufb %xmm1, %xmm11, %xmm2 # 2 = a/k
vtbl.8 q2#hi, {$invhi}, q1#hi
veor q1, q1, q0 @ vpxor %xmm0, %xmm1, %xmm1 # 0 = j
vtbl.8 q3#lo, {$invlo}, q0#lo @ vpshufb %xmm0, %xmm10, %xmm3 # 3 = 1/i
vtbl.8 q3#hi, {$invlo}, q0#hi
veor q3, q3, q2 @ vpxor %xmm2, %xmm3, %xmm3 # 3 = iak = 1/i + a/k
vtbl.8 q4#lo, {$invlo}, q1#lo @ vpshufb %xmm1, %xmm10, %xmm4 # 4 = 1/j
vtbl.8 q4#hi, {$invlo}, q1#hi
veor q7, q7, $s63 @ vpxor .Lk_s63(%rip), %xmm7, %xmm7
vtbl.8 q3#lo, {$invlo}, q3#lo @ vpshufb %xmm3, %xmm10, %xmm3 # 2 = 1/iak
vtbl.8 q3#hi, {$invlo}, q3#hi
veor q4, q4, q2 @ vpxor %xmm2, %xmm4, %xmm4 # 4 = jak = 1/j + a/k
vtbl.8 q2#lo, {$invlo}, q4#lo @ vpshufb %xmm4, %xmm10, %xmm2 # 3 = 1/jak
vtbl.8 q2#hi, {$invlo}, q4#hi
veor q3, q3, q1 @ vpxor %xmm1, %xmm3, %xmm3 # 2 = io
veor q2, q2, q0 @ vpxor %xmm0, %xmm2, %xmm2 # 3 = jo
vtbl.8 q4#lo, {q15}, q3#lo @ vpshufb %xmm3, %xmm13, %xmm4 # 4 = sbou
vtbl.8 q4#hi, {q15}, q3#hi
vtbl.8 q1#lo, {q14}, q2#lo @ vpshufb %xmm2, %xmm12, %xmm1 # 0 = sb1t
vtbl.8 q1#hi, {q14}, q2#hi
veor q1, q1, q4 @ vpxor %xmm4, %xmm1, %xmm1 # 0 = sbox output
@ add in smeared stuff
veor q0, q1, q7 @ vpxor %xmm7, %xmm1, %xmm0
veor q7, q1, q7 @ vmovdqa %xmm0, %xmm7
bx lr
.size _vpaes_schedule_round,.-_vpaes_schedule_round
@@
@@ .aes_schedule_transform
@@
@@ Linear-transform q0 according to tables at [r11]
@@
@@ Requires that q9 = 0x0F0F... as in preheat
@@ Output in q0
@@ Clobbers q1, q2, q14, q15
@@
.type _vpaes_schedule_transform,%function
.align 4
_vpaes_schedule_transform:
vld1.64 {q14,q15}, [r11] @ vmovdqa (%r11), %xmm2 # lo
@ vmovdqa 16(%r11), %xmm1 # hi
vand q1, q0, $s0F @ vpand %xmm9, %xmm0, %xmm1
vshr.u8 q0, q0, #4 @ vpsrlb \$4, %xmm0, %xmm0
vtbl.8 q2#lo, {q14}, q1#lo @ vpshufb %xmm1, %xmm2, %xmm2
vtbl.8 q2#hi, {q14}, q1#hi
vtbl.8 q0#lo, {q15}, q0#lo @ vpshufb %xmm0, %xmm1, %xmm0
vtbl.8 q0#hi, {q15}, q0#hi
veor q0, q0, q2 @ vpxor %xmm2, %xmm0, %xmm0
bx lr
.size _vpaes_schedule_transform,.-_vpaes_schedule_transform
@@
@@ .aes_schedule_mangle
@@
@@ Mangles q0 from (basis-transformed) standard version
@@ to our version.
@@
@@ On encrypt,
@@ xor with 0x63
@@ multiply by circulant 0,1,1,1
@@ apply shiftrows transform
@@
@@ On decrypt,
@@ xor with 0x63
@@ multiply by "inverse mixcolumns" circulant E,B,D,9
@@ deskew
@@ apply shiftrows transform
@@
@@
@@ Writes out to [r2], and increments or decrements it
@@ Keeps track of round number mod 4 in r8
@@ Preserves q0
@@ Clobbers q1-q5
@@
.type _vpaes_schedule_mangle,%function
.align 4
_vpaes_schedule_mangle:
tst $dir, $dir
vmov q4, q0 @ vmovdqa %xmm0, %xmm4 # save xmm0 for later
adr r11, .Lk_mc_forward @ Must be aligned to 8 mod 16.
vld1.64 {q5}, [r11] @ vmovdqa .Lk_mc_forward(%rip),%xmm5
bne .Lschedule_mangle_dec
@ encrypting
@ Write to q2 so we do not overlap table and destination below.
veor q2, q0, $s63 @ vpxor .Lk_s63(%rip), %xmm0, %xmm4
add $out, $out, #16 @ add \$16, %rdx
vtbl.8 q4#lo, {q2}, q5#lo @ vpshufb %xmm5, %xmm4, %xmm4
vtbl.8 q4#hi, {q2}, q5#hi
vtbl.8 q1#lo, {q4}, q5#lo @ vpshufb %xmm5, %xmm4, %xmm1
vtbl.8 q1#hi, {q4}, q5#hi
vtbl.8 q3#lo, {q1}, q5#lo @ vpshufb %xmm5, %xmm1, %xmm3
vtbl.8 q3#hi, {q1}, q5#hi
veor q4, q4, q1 @ vpxor %xmm1, %xmm4, %xmm4
vld1.64 {q1}, [r8] @ vmovdqa (%r8,%r10), %xmm1
veor q3, q3, q4 @ vpxor %xmm4, %xmm3, %xmm3
b .Lschedule_mangle_both
.align 4
.Lschedule_mangle_dec:
@ inverse mix columns
adr r11, .Lk_dksd @ lea .Lk_dksd(%rip),%r11
vshr.u8 q1, q4, #4 @ vpsrlb \$4, %xmm4, %xmm1 # 1 = hi
vand q4, q4, $s0F @ vpand %xmm9, %xmm4, %xmm4 # 4 = lo
vld1.64 {q14,q15}, [r11]! @ vmovdqa 0x00(%r11), %xmm2
@ vmovdqa 0x10(%r11), %xmm3
vtbl.8 q2#lo, {q14}, q4#lo @ vpshufb %xmm4, %xmm2, %xmm2
vtbl.8 q2#hi, {q14}, q4#hi
vtbl.8 q3#lo, {q15}, q1#lo @ vpshufb %xmm1, %xmm3, %xmm3
vtbl.8 q3#hi, {q15}, q1#hi
@ Load .Lk_dksb ahead of time.
vld1.64 {q14,q15}, [r11]! @ vmovdqa 0x20(%r11), %xmm2
@ vmovdqa 0x30(%r11), %xmm3
@ Write to q13 so we do not overlap table and destination.
veor q13, q3, q2 @ vpxor %xmm2, %xmm3, %xmm3
vtbl.8 q3#lo, {q13}, q5#lo @ vpshufb %xmm5, %xmm3, %xmm3
vtbl.8 q3#hi, {q13}, q5#hi
vtbl.8 q2#lo, {q14}, q4#lo @ vpshufb %xmm4, %xmm2, %xmm2
vtbl.8 q2#hi, {q14}, q4#hi
veor q2, q2, q3 @ vpxor %xmm3, %xmm2, %xmm2
vtbl.8 q3#lo, {q15}, q1#lo @ vpshufb %xmm1, %xmm3, %xmm3
vtbl.8 q3#hi, {q15}, q1#hi
@ Load .Lk_dkse ahead of time.
vld1.64 {q14,q15}, [r11]! @ vmovdqa 0x40(%r11), %xmm2
@ vmovdqa 0x50(%r11), %xmm3
@ Write to q13 so we do not overlap table and destination.
veor q13, q3, q2 @ vpxor %xmm2, %xmm3, %xmm3
vtbl.8 q3#lo, {q13}, q5#lo @ vpshufb %xmm5, %xmm3, %xmm3
vtbl.8 q3#hi, {q13}, q5#hi
vtbl.8 q2#lo, {q14}, q4#lo @ vpshufb %xmm4, %xmm2, %xmm2
vtbl.8 q2#hi, {q14}, q4#hi
veor q2, q2, q3 @ vpxor %xmm3, %xmm2, %xmm2
vtbl.8 q3#lo, {q15}, q1#lo @ vpshufb %xmm1, %xmm3, %xmm3
vtbl.8 q3#hi, {q15}, q1#hi
@ Load .Lk_dkse ahead of time.
vld1.64 {q14,q15}, [r11]! @ vmovdqa 0x60(%r11), %xmm2
@ vmovdqa 0x70(%r11), %xmm4
@ Write to q13 so we do not overlap table and destination.
veor q13, q3, q2 @ vpxor %xmm2, %xmm3, %xmm3
vtbl.8 q2#lo, {q14}, q4#lo @ vpshufb %xmm4, %xmm2, %xmm2
vtbl.8 q2#hi, {q14}, q4#hi
vtbl.8 q3#lo, {q13}, q5#lo @ vpshufb %xmm5, %xmm3, %xmm3
vtbl.8 q3#hi, {q13}, q5#hi
vtbl.8 q4#lo, {q15}, q1#lo @ vpshufb %xmm1, %xmm4, %xmm4
vtbl.8 q4#hi, {q15}, q1#hi
vld1.64 {q1}, [r8] @ vmovdqa (%r8,%r10), %xmm1
veor q2, q2, q3 @ vpxor %xmm3, %xmm2, %xmm2
veor q3, q4, q2 @ vpxor %xmm2, %xmm4, %xmm3
sub $out, $out, #16 @ add \$-16, %rdx
.Lschedule_mangle_both:
@ Write to q2 so table and destination do not overlap.
vtbl.8 q2#lo, {q3}, q1#lo @ vpshufb %xmm1, %xmm3, %xmm3
vtbl.8 q2#hi, {q3}, q1#hi
add r8, r8, #64-16 @ add \$-16, %r8
and r8, r8, #~(1<<6) @ and \$0x30, %r8
vst1.64 {q2}, [$out] @ vmovdqu %xmm3, (%rdx)
bx lr
.size _vpaes_schedule_mangle,.-_vpaes_schedule_mangle
.globl vpaes_set_encrypt_key
.type vpaes_set_encrypt_key,%function
.align 4
vpaes_set_encrypt_key:
stmdb sp!, {r7-r11, lr}
vstmdb sp!, {d8-d15}
lsr r9, $bits, #5 @ shr \$5,%eax
add r9, r9, #5 @ \$5,%eax
str r9, [$out,#240] @ mov %eax,240(%rdx) # AES_KEY->rounds = nbits/32+5;
mov $dir, #0 @ mov \$0,%ecx
mov r8, #0x30 @ mov \$0x30,%r8d
bl _vpaes_schedule_core
eor r0, r0, r0
vldmia sp!, {d8-d15}
ldmia sp!, {r7-r11, pc} @ return
.size vpaes_set_encrypt_key,.-vpaes_set_encrypt_key
.globl vpaes_set_decrypt_key
.type vpaes_set_decrypt_key,%function
.align 4
vpaes_set_decrypt_key:
stmdb sp!, {r7-r11, lr}
vstmdb sp!, {d8-d15}
lsr r9, $bits, #5 @ shr \$5,%eax
add r9, r9, #5 @ \$5,%eax
str r9, [$out,#240] @ mov %eax,240(%rdx) # AES_KEY->rounds = nbits/32+5;
lsl r9, r9, #4 @ shl \$4,%eax
add $out, $out, #16 @ lea 16(%rdx,%rax),%rdx
add $out, $out, r9
mov $dir, #1 @ mov \$1,%ecx
lsr r8, $bits, #1 @ shr \$1,%r8d
and r8, r8, #32 @ and \$32,%r8d
eor r8, r8, #32 @ xor \$32,%r8d # nbits==192?0:32
bl _vpaes_schedule_core
vldmia sp!, {d8-d15}
ldmia sp!, {r7-r11, pc} @ return
.size vpaes_set_decrypt_key,.-vpaes_set_decrypt_key
___
}
{
my ($out, $inp) = map("r$_", (0..1));
my ($s0F, $s63, $s63_raw, $mc_forward) = map("q$_", (9..12));
$code .= <<___;
@ Additional constants for converting to bsaes.
.type _vpaes_convert_consts,%object
.align 4
_vpaes_convert_consts:
@ .Lk_opt_then_skew applies skew(opt(x)) XOR 0x63, where skew is the linear
@ transform in the AES S-box. 0x63 is incorporated into the low half of the
@ table. This was computed with the following script:
@
@ def u64s_to_u128(x, y):
@ return x | (y << 64)
@ def u128_to_u64s(w):
@ return w & ((1<<64)-1), w >> 64
@ def get_byte(w, i):
@ return (w >> (i*8)) & 0xff
@ def apply_table(table, b):
@ lo = b & 0xf
@ hi = b >> 4
@ return get_byte(table[0], lo) ^ get_byte(table[1], hi)
@ def opt(b):
@ table = [
@ u64s_to_u128(0xFF9F4929D6B66000, 0xF7974121DEBE6808),
@ u64s_to_u128(0x01EDBD5150BCEC00, 0xE10D5DB1B05C0CE0),
@ ]
@ return apply_table(table, b)
@ def rot_byte(b, n):
@ return 0xff & ((b << n) | (b >> (8-n)))
@ def skew(x):
@ return (x ^ rot_byte(x, 1) ^ rot_byte(x, 2) ^ rot_byte(x, 3) ^
@ rot_byte(x, 4))
@ table = [0, 0]
@ for i in range(16):
@ table[0] |= (skew(opt(i)) ^ 0x63) << (i*8)
@ table[1] |= skew(opt(i<<4)) << (i*8)
@ print("\t.quad\t0x%016x, 0x%016x" % u128_to_u64s(table[0]))
@ print("\t.quad\t0x%016x, 0x%016x" % u128_to_u64s(table[1]))
.Lk_opt_then_skew:
.quad 0x9cb8436798bc4763, 0x6440bb9f6044bf9b
.quad 0x1f30062936192f00, 0xb49bad829db284ab
@ .Lk_decrypt_transform is a permutation which performs an 8-bit left-rotation
@ followed by a byte-swap on each 32-bit word of a vector. E.g., 0x11223344
@ becomes 0x22334411 and then 0x11443322.
.Lk_decrypt_transform:
.quad 0x0704050603000102, 0x0f0c0d0e0b08090a
.size _vpaes_convert_consts,.-_vpaes_convert_consts
@ void vpaes_encrypt_key_to_bsaes(AES_KEY *bsaes, const AES_KEY *vpaes);
.globl vpaes_encrypt_key_to_bsaes
.type vpaes_encrypt_key_to_bsaes,%function
.align 4
vpaes_encrypt_key_to_bsaes:
stmdb sp!, {r11, lr}
@ See _vpaes_schedule_core for the key schedule logic. In particular,
@ _vpaes_schedule_transform(.Lk_ipt) (section 2.2 of the paper),
@ _vpaes_schedule_mangle (section 4.3), and .Lschedule_mangle_last
@ contain the transformations not in the bsaes representation. This
@ function inverts those transforms.
@
@ Note also that bsaes-armv7.pl expects aes-armv4.pl's key
@ representation, which does not match the other aes_nohw_*
@ implementations. The ARM aes_nohw_* stores each 32-bit word
@ byteswapped, as a convenience for (unsupported) big-endian ARM, at the
@ cost of extra REV and VREV32 operations in little-endian ARM.
vmov.i8 $s0F, #0x0f @ Required by _vpaes_schedule_transform
adr r2, .Lk_mc_forward @ Must be aligned to 8 mod 16.
add r3, r2, 0x90 @ .Lk_sr+0x10-.Lk_mc_forward = 0x90 (Apple's toolchain doesn't support the expression)
vld1.64 {$mc_forward}, [r2]
vmov.i8 $s63, #0x5b @ .Lk_s63 from vpaes-x86_64
adr r11, .Lk_opt @ Must be aligned to 8 mod 16.
vmov.i8 $s63_raw, #0x63 @ .LK_s63 without .Lk_ipt applied
@ vpaes stores one fewer round count than bsaes, but the number of keys
@ is the same.
ldr r2, [$inp,#240]
add r2, r2, #1
str r2, [$out,#240]
@ The first key is transformed with _vpaes_schedule_transform(.Lk_ipt).
@ Invert this with .Lk_opt.
vld1.64 {q0}, [$inp]!
bl _vpaes_schedule_transform
vrev32.8 q0, q0
vst1.64 {q0}, [$out]!
@ The middle keys have _vpaes_schedule_transform(.Lk_ipt) applied,
@ followed by _vpaes_schedule_mangle. _vpaes_schedule_mangle XORs 0x63,
@ multiplies by the circulant 0,1,1,1, then applies ShiftRows.
.Loop_enc_key_to_bsaes:
vld1.64 {q0}, [$inp]!
@ Invert the ShiftRows step (see .Lschedule_mangle_both). Note we cycle
@ r3 in the opposite direction and start at .Lk_sr+0x10 instead of 0x30.
@ We use r3 rather than r8 to avoid a callee-saved register.
vld1.64 {q1}, [r3]
vtbl.8 q2#lo, {q0}, q1#lo
vtbl.8 q2#hi, {q0}, q1#hi
add r3, r3, #16
and r3, r3, #~(1<<6)
vmov q0, q2
@ Handle the last key differently.
subs r2, r2, #1
beq .Loop_enc_key_to_bsaes_last
@ Multiply by the circulant. This is its own inverse.
vtbl.8 q1#lo, {q0}, $mc_forward#lo
vtbl.8 q1#hi, {q0}, $mc_forward#hi
vmov q0, q1
vtbl.8 q2#lo, {q1}, $mc_forward#lo
vtbl.8 q2#hi, {q1}, $mc_forward#hi
veor q0, q0, q2
vtbl.8 q1#lo, {q2}, $mc_forward#lo
vtbl.8 q1#hi, {q2}, $mc_forward#hi
veor q0, q0, q1
@ XOR and finish.
veor q0, q0, $s63
bl _vpaes_schedule_transform
vrev32.8 q0, q0
vst1.64 {q0}, [$out]!
b .Loop_enc_key_to_bsaes
.Loop_enc_key_to_bsaes_last:
@ The final key does not have a basis transform (note
@ .Lschedule_mangle_last inverts the original transform). It only XORs
@ 0x63 and applies ShiftRows. The latter was already inverted in the
@ loop. Note that, because we act on the original representation, we use
@ $s63_raw, not $s63.
veor q0, q0, $s63_raw
vrev32.8 q0, q0
vst1.64 {q0}, [$out]
@ Wipe registers which contained key material.
veor q0, q0, q0
veor q1, q1, q1
veor q2, q2, q2
ldmia sp!, {r11, pc} @ return
.size vpaes_encrypt_key_to_bsaes,.-vpaes_encrypt_key_to_bsaes
@ void vpaes_decrypt_key_to_bsaes(AES_KEY *vpaes, const AES_KEY *bsaes);
.globl vpaes_decrypt_key_to_bsaes
.type vpaes_decrypt_key_to_bsaes,%function
.align 4
vpaes_decrypt_key_to_bsaes:
stmdb sp!, {r11, lr}
@ See _vpaes_schedule_core for the key schedule logic. Note vpaes
@ computes the decryption key schedule in reverse. Additionally,
@ aes-x86_64.pl shares some transformations, so we must only partially
@ invert vpaes's transformations. In general, vpaes computes in a
@ different basis (.Lk_ipt and .Lk_opt) and applies the inverses of
@ MixColumns, ShiftRows, and the affine part of the AES S-box (which is
@ split into a linear skew and XOR of 0x63). We undo all but MixColumns.
@
@ Note also that bsaes-armv7.pl expects aes-armv4.pl's key
@ representation, which does not match the other aes_nohw_*
@ implementations. The ARM aes_nohw_* stores each 32-bit word
@ byteswapped, as a convenience for (unsupported) big-endian ARM, at the
@ cost of extra REV and VREV32 operations in little-endian ARM.
adr r2, .Lk_decrypt_transform
adr r3, .Lk_sr+0x30
adr r11, .Lk_opt_then_skew @ Input to _vpaes_schedule_transform.
vld1.64 {$mc_forward}, [r2] @ Reuse $mc_forward from encryption.
vmov.i8 $s0F, #0x0f @ Required by _vpaes_schedule_transform
@ vpaes stores one fewer round count than bsaes, but the number of keys
@ is the same.
ldr r2, [$inp,#240]
add r2, r2, #1
str r2, [$out,#240]
@ Undo the basis change and reapply the S-box affine transform. See
@ .Lschedule_mangle_last.
vld1.64 {q0}, [$inp]!
bl _vpaes_schedule_transform
vrev32.8 q0, q0
vst1.64 {q0}, [$out]!
@ See _vpaes_schedule_mangle for the transform on the middle keys. Note
@ it simultaneously inverts MixColumns and the S-box affine transform.
@ See .Lk_dksd through .Lk_dks9.
.Loop_dec_key_to_bsaes:
vld1.64 {q0}, [$inp]!
@ Invert the ShiftRows step (see .Lschedule_mangle_both). Note going
@ forwards cancels inverting for which direction we cycle r3. We use r3
@ rather than r8 to avoid a callee-saved register.
vld1.64 {q1}, [r3]
vtbl.8 q2#lo, {q0}, q1#lo
vtbl.8 q2#hi, {q0}, q1#hi
add r3, r3, #64-16
and r3, r3, #~(1<<6)
vmov q0, q2
@ Handle the last key differently.
subs r2, r2, #1
beq .Loop_dec_key_to_bsaes_last
@ Undo the basis change and reapply the S-box affine transform.
bl _vpaes_schedule_transform
@ Rotate each word by 8 bytes (cycle the rows) and then byte-swap. We
@ combine the two operations in .Lk_decrypt_transform.
@
@ TODO(davidben): Where does the rotation come from?
vtbl.8 q1#lo, {q0}, $mc_forward#lo
vtbl.8 q1#hi, {q0}, $mc_forward#hi
vst1.64 {q1}, [$out]!
b .Loop_dec_key_to_bsaes
.Loop_dec_key_to_bsaes_last:
@ The final key only inverts ShiftRows (already done in the loop). See
@ .Lschedule_am_decrypting. Its basis is not transformed.
vrev32.8 q0, q0
vst1.64 {q0}, [$out]!
@ Wipe registers which contained key material.
veor q0, q0, q0
veor q1, q1, q1
veor q2, q2, q2
ldmia sp!, {r11, pc} @ return
.size vpaes_decrypt_key_to_bsaes,.-vpaes_decrypt_key_to_bsaes
___
}
{
# Register-passed parameters.
my ($inp, $out, $len, $key) = map("r$_", 0..3);
# Temporaries. _vpaes_encrypt_core already uses r8..r11, so overlap $ivec and
# $tmp. $ctr is r7 because it must be preserved across calls.
my ($ctr, $ivec, $tmp) = map("r$_", 7..9);
# void vpaes_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out, size_t len,
# const AES_KEY *key, const uint8_t ivec[16]);
$code .= <<___;
.globl vpaes_ctr32_encrypt_blocks
.type vpaes_ctr32_encrypt_blocks,%function
.align 4
vpaes_ctr32_encrypt_blocks:
mov ip, sp
stmdb sp!, {r7-r11, lr}
@ This function uses q4-q7 (d8-d15), which are callee-saved.
vstmdb sp!, {d8-d15}
cmp $len, #0
@ $ivec is passed on the stack.
ldr $ivec, [ip]
beq .Lctr32_done
@ _vpaes_encrypt_core expects the key in r2, so swap $len and $key.
mov $tmp, $key
mov $key, $len
mov $len, $tmp
___
my ($len, $key) = ($key, $len);
$code .= <<___;
@ Load the IV and counter portion.
ldr $ctr, [$ivec, #12]
vld1.8 {q7}, [$ivec]
bl _vpaes_preheat
rev $ctr, $ctr @ The counter is big-endian.
.Lctr32_loop:
vmov q0, q7
vld1.8 {q6}, [$inp]! @ Load input ahead of time
bl _vpaes_encrypt_core
veor q0, q0, q6 @ XOR input and result
vst1.8 {q0}, [$out]!
subs $len, $len, #1
@ Update the counter.
add $ctr, $ctr, #1
rev $tmp, $ctr
vmov.32 q7#hi[1], $tmp
bne .Lctr32_loop
.Lctr32_done:
vldmia sp!, {d8-d15}
ldmia sp!, {r7-r11, pc} @ return
.size vpaes_ctr32_encrypt_blocks,.-vpaes_ctr32_encrypt_blocks
___
}
foreach (split("\n",$code)) {
s/\bq([0-9]+)#(lo|hi)/sprintf "d%d",2*$1+($2 eq "hi")/geo;
print $_,"\n";
}
close STDOUT;