Nagram/TMessagesProj/jni/boringssl/ssl/test/runner/cipher_suites.go
2019-12-31 16:08:08 +03:00

472 lines
16 KiB
Go

// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runner
import (
"crypto"
"crypto/aes"
"crypto/cipher"
"crypto/des"
"crypto/hmac"
"crypto/md5"
"crypto/sha1"
"crypto/sha256"
"crypto/sha512"
"crypto/x509"
"hash"
)
// a keyAgreement implements the client and server side of a TLS key agreement
// protocol by generating and processing key exchange messages.
type keyAgreement interface {
// On the server side, the first two methods are called in order.
// In the case that the key agreement protocol doesn't use a
// ServerKeyExchange message, generateServerKeyExchange can return nil,
// nil.
generateServerKeyExchange(*Config, *Certificate, *clientHelloMsg, *serverHelloMsg, uint16) (*serverKeyExchangeMsg, error)
processClientKeyExchange(*Config, *Certificate, *clientKeyExchangeMsg, uint16) ([]byte, error)
// On the client side, the next two methods are called in order.
// This method may not be called if the server doesn't send a
// ServerKeyExchange message.
processServerKeyExchange(*Config, *clientHelloMsg, *serverHelloMsg, crypto.PublicKey, *serverKeyExchangeMsg) error
generateClientKeyExchange(*Config, *clientHelloMsg, *x509.Certificate) ([]byte, *clientKeyExchangeMsg, error)
// peerSignatureAlgorithm returns the signature algorithm used by the
// peer, or zero if not applicable.
peerSignatureAlgorithm() signatureAlgorithm
}
const (
// suiteECDH indicates that the cipher suite involves elliptic curve
// Diffie-Hellman. This means that it should only be selected when the
// client indicates that it supports ECC with a curve and point format
// that we're happy with.
suiteECDHE = 1 << iota
// suiteECDSA indicates that the cipher suite involves an ECDSA
// signature and therefore may only be selected when the server's
// certificate is ECDSA. If this is not set then the cipher suite is
// RSA based.
suiteECDSA
// suiteTLS12 indicates that the cipher suite should only be advertised
// and accepted when using TLS 1.2 or greater.
suiteTLS12
// suiteTLS13 indicates that the cipher suite can be used with TLS 1.3.
// Cipher suites lacking this flag may not be used with TLS 1.3.
suiteTLS13
// suiteSHA384 indicates that the cipher suite uses SHA384 as the
// handshake hash.
suiteSHA384
// suitePSK indicates that the cipher suite authenticates with
// a pre-shared key rather than a server private key.
suitePSK
)
type tlsAead struct {
cipher.AEAD
explicitNonce bool
}
// A cipherSuite is a specific combination of key agreement, cipher and MAC
// function. All cipher suites currently assume RSA key agreement.
type cipherSuite struct {
id uint16
// the lengths, in bytes, of the key material needed for each component.
keyLen int
macLen int
ivLen func(version uint16) int
ka func(version uint16) keyAgreement
// flags is a bitmask of the suite* values, above.
flags int
cipher func(key, iv []byte, isRead bool) interface{}
mac func(version uint16, macKey []byte) macFunction
aead func(version uint16, key, fixedNonce []byte) *tlsAead
}
func (cs cipherSuite) hash() crypto.Hash {
if cs.flags&suiteSHA384 != 0 {
return crypto.SHA384
}
return crypto.SHA256
}
var cipherSuites = []*cipherSuite{
{TLS_CHACHA20_POLY1305_SHA256, 32, 0, ivLenChaCha20Poly1305, nil, suiteTLS13, nil, nil, aeadCHACHA20POLY1305},
{TLS_AES_128_GCM_SHA256, 16, 0, ivLenAESGCM, nil, suiteTLS13, nil, nil, aeadAESGCM},
{TLS_AES_256_GCM_SHA384, 32, 0, ivLenAESGCM, nil, suiteTLS13 | suiteSHA384, nil, nil, aeadAESGCM},
{TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 32, 0, ivLenChaCha20Poly1305, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteTLS12, nil, nil, aeadCHACHA20POLY1305},
{TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 32, 0, ivLenChaCha20Poly1305, ecdheRSAKA, suiteECDHE | suiteTLS12, nil, nil, aeadCHACHA20POLY1305},
{TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 16, 0, ivLenAESGCM, ecdheRSAKA, suiteECDHE | suiteTLS12, nil, nil, aeadAESGCM},
{TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 16, 0, ivLenAESGCM, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteTLS12, nil, nil, aeadAESGCM},
{TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384, 32, 0, ivLenAESGCM, ecdheRSAKA, suiteECDHE | suiteTLS12 | suiteSHA384, nil, nil, aeadAESGCM},
{TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, 32, 0, ivLenAESGCM, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteTLS12 | suiteSHA384, nil, nil, aeadAESGCM},
{TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256, 16, 32, ivLenAES, ecdheRSAKA, suiteECDHE | suiteTLS12, cipherAES, macSHA256, nil},
{TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256, 16, 32, ivLenAES, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteTLS12, cipherAES, macSHA256, nil},
{TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA, 16, 20, ivLenAES, ecdheRSAKA, suiteECDHE, cipherAES, macSHA1, nil},
{TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, 16, 20, ivLenAES, ecdheECDSAKA, suiteECDHE | suiteECDSA, cipherAES, macSHA1, nil},
{TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384, 32, 48, ivLenAES, ecdheRSAKA, suiteECDHE | suiteTLS12 | suiteSHA384, cipherAES, macSHA384, nil},
{TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384, 32, 48, ivLenAES, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteTLS12 | suiteSHA384, cipherAES, macSHA384, nil},
{TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA, 32, 20, ivLenAES, ecdheRSAKA, suiteECDHE, cipherAES, macSHA1, nil},
{TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, 32, 20, ivLenAES, ecdheECDSAKA, suiteECDHE | suiteECDSA, cipherAES, macSHA1, nil},
{TLS_RSA_WITH_AES_128_GCM_SHA256, 16, 0, ivLenAESGCM, rsaKA, suiteTLS12, nil, nil, aeadAESGCM},
{TLS_RSA_WITH_AES_256_GCM_SHA384, 32, 0, ivLenAESGCM, rsaKA, suiteTLS12 | suiteSHA384, nil, nil, aeadAESGCM},
{TLS_RSA_WITH_AES_128_CBC_SHA256, 16, 32, ivLenAES, rsaKA, suiteTLS12, cipherAES, macSHA256, nil},
{TLS_RSA_WITH_AES_256_CBC_SHA256, 32, 32, ivLenAES, rsaKA, suiteTLS12, cipherAES, macSHA256, nil},
{TLS_RSA_WITH_AES_128_CBC_SHA, 16, 20, ivLenAES, rsaKA, 0, cipherAES, macSHA1, nil},
{TLS_RSA_WITH_AES_256_CBC_SHA, 32, 20, ivLenAES, rsaKA, 0, cipherAES, macSHA1, nil},
{TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA, 24, 20, ivLen3DES, ecdheRSAKA, suiteECDHE, cipher3DES, macSHA1, nil},
{TLS_RSA_WITH_3DES_EDE_CBC_SHA, 24, 20, ivLen3DES, rsaKA, 0, cipher3DES, macSHA1, nil},
{TLS_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256, 32, 0, ivLenChaCha20Poly1305, ecdhePSKKA, suiteECDHE | suitePSK | suiteTLS12, nil, nil, aeadCHACHA20POLY1305},
{TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA, 16, 20, ivLenAES, ecdhePSKKA, suiteECDHE | suitePSK, cipherAES, macSHA1, nil},
{TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA, 32, 20, ivLenAES, ecdhePSKKA, suiteECDHE | suitePSK, cipherAES, macSHA1, nil},
{TLS_PSK_WITH_AES_128_CBC_SHA, 16, 20, ivLenAES, pskKA, suitePSK, cipherAES, macSHA1, nil},
{TLS_PSK_WITH_AES_256_CBC_SHA, 32, 20, ivLenAES, pskKA, suitePSK, cipherAES, macSHA1, nil},
{TLS_RSA_WITH_NULL_SHA, 0, 20, noIV, rsaKA, 0, cipherNull, macSHA1, nil},
}
func noIV(vers uint16) int {
return 0
}
func ivLenChaCha20Poly1305(vers uint16) int {
return 12
}
func ivLenAESGCM(vers uint16) int {
if vers >= VersionTLS13 {
return 12
}
return 4
}
func ivLenAES(vers uint16) int {
return 16
}
func ivLen3DES(vers uint16) int {
return 8
}
type nullCipher struct{}
func cipherNull(key, iv []byte, isRead bool) interface{} {
return nullCipher{}
}
func cipher3DES(key, iv []byte, isRead bool) interface{} {
block, _ := des.NewTripleDESCipher(key)
if isRead {
return cipher.NewCBCDecrypter(block, iv)
}
return cipher.NewCBCEncrypter(block, iv)
}
func cipherAES(key, iv []byte, isRead bool) interface{} {
block, _ := aes.NewCipher(key)
if isRead {
return cipher.NewCBCDecrypter(block, iv)
}
return cipher.NewCBCEncrypter(block, iv)
}
// macSHA1 returns a macFunction for the given protocol version.
func macSHA1(version uint16, key []byte) macFunction {
if version == VersionSSL30 {
mac := ssl30MAC{
h: sha1.New(),
key: make([]byte, len(key)),
}
copy(mac.key, key)
return mac
}
return tls10MAC{hmac.New(sha1.New, key)}
}
func macMD5(version uint16, key []byte) macFunction {
if version == VersionSSL30 {
mac := ssl30MAC{
h: md5.New(),
key: make([]byte, len(key)),
}
copy(mac.key, key)
return mac
}
return tls10MAC{hmac.New(md5.New, key)}
}
func macSHA256(version uint16, key []byte) macFunction {
if version == VersionSSL30 {
mac := ssl30MAC{
h: sha256.New(),
key: make([]byte, len(key)),
}
copy(mac.key, key)
return mac
}
return tls10MAC{hmac.New(sha256.New, key)}
}
func macSHA384(version uint16, key []byte) macFunction {
if version == VersionSSL30 {
mac := ssl30MAC{
h: sha512.New384(),
key: make([]byte, len(key)),
}
copy(mac.key, key)
return mac
}
return tls10MAC{hmac.New(sha512.New384, key)}
}
type macFunction interface {
Size() int
MAC(digestBuf, seq, header, length, data []byte) []byte
}
// fixedNonceAEAD wraps an AEAD and prefixes a fixed portion of the nonce to
// each call.
type fixedNonceAEAD struct {
// sealNonce and openNonce are buffers where the larger nonce will be
// constructed. Since a seal and open operation may be running
// concurrently, there is a separate buffer for each.
sealNonce, openNonce []byte
aead cipher.AEAD
}
func (f *fixedNonceAEAD) NonceSize() int { return 8 }
func (f *fixedNonceAEAD) Overhead() int { return f.aead.Overhead() }
func (f *fixedNonceAEAD) Seal(out, nonce, plaintext, additionalData []byte) []byte {
copy(f.sealNonce[len(f.sealNonce)-8:], nonce)
return f.aead.Seal(out, f.sealNonce, plaintext, additionalData)
}
func (f *fixedNonceAEAD) Open(out, nonce, plaintext, additionalData []byte) ([]byte, error) {
copy(f.openNonce[len(f.openNonce)-8:], nonce)
return f.aead.Open(out, f.openNonce, plaintext, additionalData)
}
func aeadAESGCM(version uint16, key, fixedNonce []byte) *tlsAead {
aes, err := aes.NewCipher(key)
if err != nil {
panic(err)
}
aead, err := cipher.NewGCM(aes)
if err != nil {
panic(err)
}
nonce1, nonce2 := make([]byte, 12), make([]byte, 12)
copy(nonce1, fixedNonce)
copy(nonce2, fixedNonce)
if version >= VersionTLS13 {
return &tlsAead{&xorNonceAEAD{nonce1, nonce2, aead}, false}
}
return &tlsAead{&fixedNonceAEAD{nonce1, nonce2, aead}, true}
}
func xorSlice(out, in []byte) {
for i := range out {
out[i] ^= in[i]
}
}
// xorNonceAEAD wraps an AEAD and XORs a fixed portion of the nonce, left-padded
// if necessary, each call.
type xorNonceAEAD struct {
// sealNonce and openNonce are buffers where the larger nonce will be
// constructed. Since a seal and open operation may be running
// concurrently, there is a separate buffer for each.
sealNonce, openNonce []byte
aead cipher.AEAD
}
func (x *xorNonceAEAD) NonceSize() int { return 8 }
func (x *xorNonceAEAD) Overhead() int { return x.aead.Overhead() }
func (x *xorNonceAEAD) Seal(out, nonce, plaintext, additionalData []byte) []byte {
xorSlice(x.sealNonce[len(x.sealNonce)-len(nonce):], nonce)
ret := x.aead.Seal(out, x.sealNonce, plaintext, additionalData)
xorSlice(x.sealNonce[len(x.sealNonce)-len(nonce):], nonce)
return ret
}
func (x *xorNonceAEAD) Open(out, nonce, plaintext, additionalData []byte) ([]byte, error) {
xorSlice(x.openNonce[len(x.openNonce)-len(nonce):], nonce)
ret, err := x.aead.Open(out, x.openNonce, plaintext, additionalData)
xorSlice(x.openNonce[len(x.openNonce)-len(nonce):], nonce)
return ret, err
}
func aeadCHACHA20POLY1305(version uint16, key, fixedNonce []byte) *tlsAead {
aead, err := newChaCha20Poly1305(key)
if err != nil {
panic(err)
}
nonce1, nonce2 := make([]byte, len(fixedNonce)), make([]byte, len(fixedNonce))
copy(nonce1, fixedNonce)
copy(nonce2, fixedNonce)
return &tlsAead{&xorNonceAEAD{nonce1, nonce2, aead}, false}
}
// ssl30MAC implements the SSLv3 MAC function, as defined in
// www.mozilla.org/projects/security/pki/nss/ssl/draft302.txt section 5.2.3.1
type ssl30MAC struct {
h hash.Hash
key []byte
}
func (s ssl30MAC) Size() int {
return s.h.Size()
}
var ssl30Pad1 = [48]byte{0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36}
var ssl30Pad2 = [48]byte{0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c}
func (s ssl30MAC) MAC(digestBuf, seq, header, length, data []byte) []byte {
padLength := 48
if s.h.Size() == 20 {
padLength = 40
}
s.h.Reset()
s.h.Write(s.key)
s.h.Write(ssl30Pad1[:padLength])
s.h.Write(seq)
s.h.Write(header[:1])
s.h.Write(length)
s.h.Write(data)
digestBuf = s.h.Sum(digestBuf[:0])
s.h.Reset()
s.h.Write(s.key)
s.h.Write(ssl30Pad2[:padLength])
s.h.Write(digestBuf)
return s.h.Sum(digestBuf[:0])
}
// tls10MAC implements the TLS 1.0 MAC function. RFC 2246, section 6.2.3.
type tls10MAC struct {
h hash.Hash
}
func (s tls10MAC) Size() int {
return s.h.Size()
}
func (s tls10MAC) MAC(digestBuf, seq, header, length, data []byte) []byte {
s.h.Reset()
s.h.Write(seq)
s.h.Write(header)
s.h.Write(length)
s.h.Write(data)
return s.h.Sum(digestBuf[:0])
}
func rsaKA(version uint16) keyAgreement {
return &rsaKeyAgreement{version: version}
}
func ecdheECDSAKA(version uint16) keyAgreement {
return &ecdheKeyAgreement{
auth: &signedKeyAgreement{
keyType: keyTypeECDSA,
version: version,
},
}
}
func ecdheRSAKA(version uint16) keyAgreement {
return &ecdheKeyAgreement{
auth: &signedKeyAgreement{
keyType: keyTypeRSA,
version: version,
},
}
}
func pskKA(version uint16) keyAgreement {
return &pskKeyAgreement{
base: &nilKeyAgreement{},
}
}
func ecdhePSKKA(version uint16) keyAgreement {
return &pskKeyAgreement{
base: &ecdheKeyAgreement{
auth: &nilKeyAgreementAuthentication{},
},
}
}
// mutualCipherSuite returns a cipherSuite given a list of supported
// ciphersuites and the id requested by the peer.
func mutualCipherSuite(have []uint16, want uint16) *cipherSuite {
for _, id := range have {
if id == want {
return cipherSuiteFromID(id)
}
}
return nil
}
func cipherSuiteFromID(id uint16) *cipherSuite {
for _, suite := range cipherSuites {
if suite.id == id {
return suite
}
}
return nil
}
// A list of the possible cipher suite ids. Taken from
// http://www.iana.org/assignments/tls-parameters/tls-parameters.xml
const (
TLS_RSA_WITH_NULL_SHA uint16 = 0x0002
TLS_RSA_WITH_3DES_EDE_CBC_SHA uint16 = 0x000a
TLS_RSA_WITH_AES_128_CBC_SHA uint16 = 0x002f
TLS_RSA_WITH_AES_256_CBC_SHA uint16 = 0x0035
TLS_RSA_WITH_AES_128_CBC_SHA256 uint16 = 0x003c
TLS_RSA_WITH_AES_256_CBC_SHA256 uint16 = 0x003d
TLS_PSK_WITH_AES_128_CBC_SHA uint16 = 0x008c
TLS_PSK_WITH_AES_256_CBC_SHA uint16 = 0x008d
TLS_RSA_WITH_AES_128_GCM_SHA256 uint16 = 0x009c
TLS_RSA_WITH_AES_256_GCM_SHA384 uint16 = 0x009d
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA uint16 = 0xc009
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA uint16 = 0xc00a
TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA uint16 = 0xc012
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA uint16 = 0xc013
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA uint16 = 0xc014
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 uint16 = 0xc023
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 uint16 = 0xc024
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 uint16 = 0xc027
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 uint16 = 0xc028
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 uint16 = 0xc02b
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 uint16 = 0xc02c
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 uint16 = 0xc02f
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 uint16 = 0xc030
TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA uint16 = 0xc035
TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA uint16 = 0xc036
TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256 uint16 = 0xcca8
TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256 uint16 = 0xcca9
TLS_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256 uint16 = 0xccac
renegotiationSCSV uint16 = 0x00ff
fallbackSCSV uint16 = 0x5600
)
// Additional cipher suite IDs, not IANA-assigned.
const (
TLS_AES_128_GCM_SHA256 uint16 = 0x1301
TLS_AES_256_GCM_SHA384 uint16 = 0x1302
TLS_CHACHA20_POLY1305_SHA256 uint16 = 0x1303
)