MTPyroger/pyrogram/crypto/prime.py
2022-01-07 10:23:45 +01:00

83 lines
2.4 KiB
Python

# Pyrogram - Telegram MTProto API Client Library for Python
# Copyright (C) 2017-present Dan <https://github.com/delivrance>
#
# This file is part of Pyrogram.
#
# Pyrogram is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# Pyrogram is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with Pyrogram. If not, see <http://www.gnu.org/licenses/>.
from random import randint
CURRENT_DH_PRIME = int(
"C71CAEB9C6B1C9048E6C522F70F13F73980D40238E3E21C14934D037563D930F"
"48198A0AA7C14058229493D22530F4DBFA336F6E0AC925139543AED44CCE7C37"
"20FD51F69458705AC68CD4FE6B6B13ABDC9746512969328454F18FAF8C595F64"
"2477FE96BB2A941D5BCD1D4AC8CC49880708FA9B378E3C4F3A9060BEE67CF9A4"
"A4A695811051907E162753B56B0F6B410DBA74D8A84B2A14B3144E0EF1284754"
"FD17ED950D5965B4B9DD46582DB1178D169C6BC465B0D6FF9CA3928FEF5B9AE4"
"E418FC15E83EBEA0F87FA9FF5EED70050DED2849F47BF959D956850CE929851F"
"0D8115F635B105EE2E4E15D04B2454BF6F4FADF034B10403119CD8E3B92FCC5B",
16
)
# Recursive variant
# def gcd(cls, a: int, b: int) -> int:
# return cls.gcd(b, a % b) if b else a
def gcd(a: int, b: int) -> int:
while b:
a, b = b, a % b
return a
def decompose(pq: int) -> int:
# https://comeoncodeon.wordpress.com/2010/09/18/pollard-rho-brent-integer-factorization/
if pq % 2 == 0:
return 2
y, c, m = randint(1, pq - 1), randint(1, pq - 1), randint(1, pq - 1)
g = r = q = 1
x = ys = 0
while g == 1:
x = y
for i in range(r):
y = (pow(y, 2, pq) + c) % pq
k = 0
while k < r and g == 1:
ys = y
for i in range(min(m, r - k)):
y = (pow(y, 2, pq) + c) % pq
q = q * (abs(x - y)) % pq
g = gcd(q, pq)
k += m
r *= 2
if g == pq:
while True:
ys = (pow(ys, 2, pq) + c) % pq
g = gcd(abs(x - ys), pq)
if g > 1:
break
return g