word_cloud_bot/test/rediswr.py

97 lines
3.5 KiB
Python
Raw Normal View History

2021-05-05 02:59:30 +00:00
# encoding=utf-8
2021-05-05 06:50:25 +00:00
import re
import redis
2021-05-05 02:59:30 +00:00
import jieba
import jieba.posseg as pseg
2021-05-05 06:50:25 +00:00
import time # 引入time模块
import wordcloud
2021-05-05 02:59:30 +00:00
# 导入imageio库中的imread函数并用这个函数读取本地图片作为词云形状图片
import imageio
2021-05-05 06:50:25 +00:00
# import datetime
# import threading
# import telegram
# from telegram import InlineKeyboardMarkup, InlineKeyboardButton, ForceReply
# from telegram.ext import CommandHandler, MessageHandler, Filters, ConversationHandler, CallbackQueryHandler
# from config import TOKEN
# import sqlite3
# import time
# import os
# import importlib
# import requests
#
# bot = telegram.Bot(token=TOKEN)
pool = redis.ConnectionPool(host='127.0.0.1', port=6379, encoding='utf8', decode_responses=True)
2021-05-05 02:59:30 +00:00
r = redis.StrictRedis(connection_pool=pool)
2021-05-05 06:50:25 +00:00
key_list = r.keys()
group_list = []
for i in key_list:
if "chat_content" in i:
group_list.append(i[:i.find("_")])
print(group_list)
# mk = imageio.imread("/root/Jupyter/circle.png")
# w = wordcloud.WordCloud(mask=mk)
2021-05-05 02:59:30 +00:00
# 构建并配置词云对象w注意要加scale参数提高清晰度
w = wordcloud.WordCloud(width=800,
height=800,
background_color='white',
font_path='/root/Jupyter/hanyiqihei.ttf',
2021-05-05 06:50:25 +00:00
# mask=mk,
2021-05-05 02:59:30 +00:00
scale=5)
2021-05-05 06:50:25 +00:00
for group in group_list:
start_time = float(time.time())
# 生成词云图片
jieba.enable_paddle() # 启动paddle模式。 0.40版之后开始支持,早期版本不支持
words = pseg.cut(r.get("{}_chat_content".format(group)), use_paddle=True) # paddle模式
word_list = []
for word, flag in words:
# print(word + "\t" + flag)
if flag in ["n", "nr", "nz", "PER", "f", "ns", "LOC", "s", "nt", "ORG", "nw"]:
# 判断该词是否有效,不为空格
if re.match(r"^\s+?$", word) is None:
word_list.append(word)
# print(word_list)
2021-05-05 02:59:30 +00:00
2021-05-05 06:50:25 +00:00
# 分析高频词
word_amount = {}
print(word_amount)
for word in word_list:
# 判断该词是否之前已经出现
if word_amount.get(word) is not None:
word_amount[word] = word_amount.get(word) + 1
else:
word_amount[word] = 1
print(word_amount)
word_amount = sorted(word_amount.items(), key=lambda kv: (kv[1]), reverse=True)
print("排序后的热词:" + str(word_amount))
hot_word_string = ""
for i in range(min(5, len(word_amount))):
hot_word_string += str(word_amount[i][0]) + "\t热度: " + str(word_amount[i][1]) + "\n"
print(hot_word_string)
# 获取消息总数
total_message_amount = r.get("{}_total_message_amount".format(group))
2021-05-05 02:59:30 +00:00
2021-05-05 06:50:25 +00:00
# 获取发言用户数
user_amount = len(r.hkeys("{}_user_message_amount".format(group)))
# 获取所有用户发言数字典
user_message_amount = r.hgetall("-1001403536948_user_message_amount")
user_message_amount = sorted(user_message_amount.items(), key=lambda kv: (kv[1]), reverse=True)
print("排序后的用户:" + str(user_message_amount))
top_5_user = ""
for i in range(min(5, len(user_message_amount))):
top_5_user += str(user_message_amount[i][0]) + "\t发言数: " + str(user_message_amount[i][1]) + "\n"
print(top_5_user)
string = " ".join(word_list)
# 将string变量传入w的generate()方法,给词云输入文字
w.generate(string)
# 将词云图片导出到当前文件夹
w.to_file('{}_chat_word_cloud.png'.format(group))
2021-05-05 02:59:30 +00:00
2021-05-05 06:50:25 +00:00
stop_time = float(time.time())
print("当前群组处理耗时:" + str(stop_time - start_time))