StarRailCopilot/module/map/perspective_items.py

184 lines
5.4 KiB
Python
Raw Normal View History

2020-03-28 17:22:46 +00:00
import numpy as np
class Points:
def __init__(self, points, config):
if points is None:
self._bool = False
self.points = None
else:
self._bool = True
self.points = np.array(points)
if len(self.points.shape) == 1:
self.points = np.array([self.points])
self.config = config
self.x, self.y = self.points.T
def __str__(self):
return str(self.points)
def __iter__(self):
return iter(self.points)
def __getitem__(self, item):
return self.points[item]
def __len__(self):
return len(self.points)
def __bool__(self):
return self._bool
def link(self, point, is_horizontal=False):
if is_horizontal:
lines = [[y, np.pi/2] for y in self.y]
return Lines(lines, is_horizontal=True, config=self.config)
else:
x, y = point
theta = -np.arctan((self.x - x) / (self.y - y))
rho = self.x * np.cos(theta) + self.y * np.sin(theta)
lines = np.array([rho, theta]).T
return Lines(lines, is_horizontal=False, config=self.config)
class Lines:
def __init__(self, lines, is_horizontal, config):
if lines is None or len(lines) == 0:
self._bool = False
self.lines = None
else:
self._bool = True
self.lines = np.array(lines)
if len(self.lines.shape) == 1:
self.lines = np.array([self.lines])
self.rho, self.theta = self.lines.T
self.is_horizontal = is_horizontal
self.config = config
def __str__(self):
return str(self.lines)
def __iter__(self):
return iter(self.lines)
def __getitem__(self, item):
return Lines(self.lines[item], is_horizontal=self.is_horizontal, config=self.config)
def __len__(self):
if self:
return len(self.lines)
else:
return 0
def __bool__(self):
return self._bool
@property
def sin(self):
return np.sin(self.theta)
@property
def cos(self):
return np.cos(self.theta)
@property
def mean(self):
if not self:
return None
if self.is_horizontal:
return np.mean(self.lines, axis=0)
else:
x = np.mean(self.mid)
theta = np.mean(self.theta)
rho = x * np.cos(theta) + self.config.MID_Y * np.sin(theta)
return np.array((rho, theta))
@property
def mid(self):
if not self:
return np.array([])
if self.is_horizontal:
return self.rho
else:
return (self.rho - self.config.MID_Y * self.sin) / self.cos
def get_x(self, y):
return (self.rho - y * self.sin) / self.cos
def get_y(self, x):
return (self.rho - x * self.cos) / self.sin
def add(self, other):
if not other:
return self
lines = np.append(self.lines, other.lines, axis=0)
return Lines(lines, is_horizontal=self.is_horizontal, config=self.config)
def move(self, x, y):
if not self:
return self
if self.is_horizontal:
self.lines[:, 0] += y
else:
self.lines[:, 0] += x * self.cos + y * self.sin
return Lines(self.lines, is_horizontal=self.is_horizontal, config=self.config)
def sort(self):
if not self:
return self
lines = self.lines[np.argsort(self.mid)]
return Lines(lines, is_horizontal=self.is_horizontal, config=self.config)
def group(self, threshold=3):
if not self:
return self
lines = self.sort()
prev = 0
regrouped = []
group = []
for mid, line in zip(lines.mid, lines.lines):
line = line.tolist()
if mid - prev > threshold:
if len(regrouped) == 0:
if len(group) != 0:
regrouped = [group]
else:
regrouped += [group]
group = [line]
else:
group.append(line)
prev = mid
regrouped += [group]
regrouped = np.vstack([Lines(r, is_horizontal=self.is_horizontal, config=self.config).mean for r in regrouped])
return Lines(regrouped, is_horizontal=self.is_horizontal, config=self.config)
def distance_to_point(self, point):
x, y = point
return self.rho - x * self.cos - y * self.sin
@staticmethod
def cross_two_lines(lines1, lines2):
for rho1, sin1, cos1 in zip(lines1.rho, lines1.sin, lines1.cos):
for rho2, sin2, cos2 in zip(lines2.rho, lines2.sin, lines2.cos):
a = np.array([[cos1, sin1], [cos2, sin2]])
b = np.array([rho1, rho2])
yield np.linalg.solve(a, b)
def cross(self, other):
points = np.vstack(self.cross_two_lines(self, other))
points = Points(points, config=self.config)
return points
def delete(self, other, threshold=3):
if not self:
return self
other_mid = other.mid
lines = []
for mid, line in zip(self.mid, self.lines):
if np.any(np.abs(other_mid - mid) < threshold):
continue
lines.append(line)
return Lines(lines, is_horizontal=self.is_horizontal, config=self.config)