2024-06-10 18:13:32 +00:00
|
|
|
import cv2
|
|
|
|
import numpy as np
|
|
|
|
from scipy import signal
|
|
|
|
|
|
|
|
from module.base.base import ModuleBase
|
|
|
|
from module.base.button import ButtonWrapper
|
2024-06-20 18:24:03 +00:00
|
|
|
from module.base.decorator import cached_property
|
2024-06-10 18:13:32 +00:00
|
|
|
from module.base.timer import Timer
|
|
|
|
from module.base.utils import Lines, area_center, area_offset, color_similarity_2d
|
|
|
|
from module.logger import logger
|
|
|
|
|
|
|
|
|
|
|
|
def xywh2xyxy(area):
|
|
|
|
"""
|
|
|
|
Convert (x, y, width, height) to (x1, y1, x2, y2)
|
|
|
|
"""
|
|
|
|
x, y, w, h = area
|
|
|
|
return x, y, x + w, y + h
|
|
|
|
|
|
|
|
|
|
|
|
def xyxy2xywh(area):
|
|
|
|
"""
|
|
|
|
Convert (x1, y1, x2, y2) to (x, y, width, height)
|
|
|
|
"""
|
|
|
|
x1, y1, x2, y2 = area
|
|
|
|
return min(x1, x2), min(y1, y2), abs(x2 - x1), abs(y2 - y1)
|
|
|
|
|
|
|
|
|
|
|
|
class InventoryItem:
|
|
|
|
def __init__(self, main: ModuleBase, loca: tuple[int, int], point: tuple[int, int]):
|
|
|
|
self.main = main
|
|
|
|
self.loca = loca
|
|
|
|
self.point = point
|
|
|
|
|
|
|
|
def __str__(self):
|
|
|
|
return f'Item({self.loca})'
|
|
|
|
|
|
|
|
__repr__ = __str__
|
|
|
|
|
|
|
|
def crop(self, area, copy=False):
|
|
|
|
area = area_offset(area, offset=self.point)
|
|
|
|
return self.main.image_crop(area, copy=copy)
|
|
|
|
|
|
|
|
@cached_property
|
|
|
|
def button(self):
|
|
|
|
area = area_offset((-40, -20, 40, 20), offset=self.point)
|
|
|
|
return area
|
|
|
|
|
|
|
|
@cached_property
|
|
|
|
def is_selected(self):
|
|
|
|
image = self.crop((-60, -100, 60, 40))
|
|
|
|
image = color_similarity_2d(image, (255, 255, 255))
|
|
|
|
param = {
|
|
|
|
'height': 160,
|
|
|
|
}
|
|
|
|
hori = cv2.reduce(image, 1, cv2.REDUCE_AVG).flatten()
|
|
|
|
peaks, _ = signal.find_peaks(hori, **param)
|
|
|
|
if len(peaks) != 2:
|
|
|
|
return False
|
|
|
|
vert = cv2.reduce(image, 0, cv2.REDUCE_AVG).flatten()
|
|
|
|
peaks, _ = signal.find_peaks(vert, **param)
|
|
|
|
if len(peaks) != 2:
|
|
|
|
return False
|
|
|
|
return True
|
|
|
|
|
|
|
|
|
|
|
|
class InventoryManager:
|
|
|
|
GRID_DELTA = (104, 124)
|
|
|
|
|
|
|
|
ERROR_LINES_TOLERANCE = (-10, 10)
|
|
|
|
COINCIDENT_POINT_ENCOURAGE_DISTANCE = 1.
|
|
|
|
|
2024-06-20 18:24:03 +00:00
|
|
|
MAXIMUM_ITEMS = 30
|
|
|
|
|
2024-06-10 18:13:32 +00:00
|
|
|
def __init__(self, main: ModuleBase, inventory: ButtonWrapper):
|
|
|
|
"""
|
|
|
|
max_count: expected max count of this inventory page
|
|
|
|
"""
|
|
|
|
self.main = main
|
|
|
|
self.inventory = inventory
|
|
|
|
self.items: dict[tuple[int, int], InventoryItem] = {}
|
|
|
|
self.selected: InventoryItem | None = None
|
|
|
|
|
|
|
|
def mid_cleanse(self, mids, mid_diff_range, edge_range):
|
|
|
|
"""
|
|
|
|
Args:
|
|
|
|
mids:
|
|
|
|
mid_diff_range:
|
|
|
|
edge_range:
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
|
|
|
"""
|
|
|
|
count = len(mids)
|
|
|
|
if count == 1:
|
|
|
|
return mids
|
2024-06-23 09:52:55 +00:00
|
|
|
|
|
|
|
# Only one row, [173.5 175. ]
|
|
|
|
mid_diff_mean = np.mean(mid_diff_range)
|
|
|
|
diff = max(mids) - min(mids)
|
|
|
|
if diff < mid_diff_mean * 0.3:
|
|
|
|
return np.mean(mids).reshape((1,))
|
|
|
|
# Double rows
|
|
|
|
if count == 2:
|
2024-06-10 18:13:32 +00:00
|
|
|
return mids
|
2024-06-23 09:52:55 +00:00
|
|
|
|
2024-06-10 18:13:32 +00:00
|
|
|
# print(mids)
|
|
|
|
encourage = self.COINCIDENT_POINT_ENCOURAGE_DISTANCE ** 2
|
|
|
|
|
|
|
|
# Drawing lines
|
|
|
|
def iter_lines():
|
|
|
|
for index, mid in enumerate(mids):
|
|
|
|
for n in range(self.ERROR_LINES_TOLERANCE[0], self.ERROR_LINES_TOLERANCE[1] + 1):
|
|
|
|
theta = np.arctan(index + n)
|
|
|
|
rho = mid * np.cos(theta)
|
|
|
|
yield [rho, theta]
|
|
|
|
|
|
|
|
def coincident_point_value(point):
|
|
|
|
"""Value that measures how close a point to the coincident point. The smaller the better.
|
|
|
|
Coincident point may be many.
|
|
|
|
Use an activation function to encourage a group of coincident lines and ignore wrong lines.
|
|
|
|
"""
|
|
|
|
x, y = point
|
|
|
|
# Do not use:
|
|
|
|
# distance = coincident.distance_to_point(point)
|
|
|
|
distance = np.abs(x - coincident.get_x(y))
|
|
|
|
# print((distance * 1).astype(int).reshape(len(mids), np.diff(self.config.ERROR_LINES_TOLERANCE)[0]+1))
|
|
|
|
|
|
|
|
# Activation function
|
|
|
|
# distance = 1 / (1 + np.exp(16 / distance - distance))
|
|
|
|
distance = 1 / (1 + np.exp(encourage / distance) / distance)
|
|
|
|
distance = np.sum(distance)
|
|
|
|
return distance
|
|
|
|
|
|
|
|
# Fitting mid
|
|
|
|
coincident = Lines(np.vstack(list(iter_lines())), is_horizontal=False)
|
|
|
|
coincident_point_range = (
|
|
|
|
(
|
|
|
|
-abs(self.ERROR_LINES_TOLERANCE[0]) * mid_diff_range[1] + edge_range[0],
|
|
|
|
abs(self.ERROR_LINES_TOLERANCE[1]) * mid_diff_range[1] + edge_range[1]
|
|
|
|
),
|
|
|
|
mid_diff_range
|
|
|
|
)
|
|
|
|
from scipy import optimize
|
|
|
|
coincident_point = optimize.brute(coincident_point_value, coincident_point_range)
|
|
|
|
# print(coincident_point)
|
|
|
|
|
|
|
|
# Filling mid
|
|
|
|
left, right = edge_range
|
|
|
|
mids = np.arange(-25, 25) * coincident_point[1] + coincident_point[0]
|
|
|
|
mids = mids[(mids > left) & (mids < right)]
|
|
|
|
# print(mids)
|
|
|
|
return mids
|
|
|
|
|
|
|
|
def update(self):
|
|
|
|
image = self.main.image_crop(self.inventory, copy=False)
|
|
|
|
image = color_similarity_2d(image, color=(252, 200, 109))
|
|
|
|
|
|
|
|
# Search rarity stars
|
|
|
|
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
|
|
|
|
cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel, dst=image)
|
|
|
|
# image_star = cv2.inRange(image, 221, 255)
|
|
|
|
# Close rarity stars as item
|
|
|
|
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (25, 3))
|
|
|
|
cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernel, dst=image)
|
|
|
|
image_item = cv2.inRange(image, 221, 255)
|
|
|
|
|
|
|
|
# from PIL import Image
|
2024-06-19 14:20:40 +00:00
|
|
|
# Image.fromarray(image_item).show()
|
2024-06-10 18:13:32 +00:00
|
|
|
|
|
|
|
def iter_area(im):
|
|
|
|
# Iter matched area from given image
|
|
|
|
contours, _ = cv2.findContours(im, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
for cont in contours:
|
|
|
|
rect = cv2.boundingRect(cv2.convexHull(cont).astype(np.float32))
|
|
|
|
# width < 5stars and height < 1star
|
|
|
|
if not (65 > rect[2] >= 5 and 10 > rect[3]):
|
|
|
|
continue
|
|
|
|
rect = xywh2xyxy(rect)
|
|
|
|
rect = area_center(rect)
|
|
|
|
yield rect
|
|
|
|
|
|
|
|
area_item = list(iter_area(image_item))
|
|
|
|
|
|
|
|
# Re-generate a correct xy array
|
|
|
|
points = np.array(area_item)
|
|
|
|
points += self.inventory.area[:2]
|
|
|
|
area = self.inventory.area
|
|
|
|
x_list = np.unique(np.sort(points[:, 0]))
|
|
|
|
y_list = np.unique(np.sort(points[:, 1]))
|
2024-06-17 16:25:32 +00:00
|
|
|
# print(x_list)
|
|
|
|
# print(y_list)
|
2024-06-10 18:13:32 +00:00
|
|
|
x_list = self.mid_cleanse(
|
|
|
|
x_list,
|
|
|
|
mid_diff_range=(self.GRID_DELTA[0] - 3, self.GRID_DELTA[0] + 3),
|
|
|
|
edge_range=(area[0], area[2])
|
|
|
|
)
|
|
|
|
y_list = self.mid_cleanse(
|
|
|
|
y_list,
|
|
|
|
mid_diff_range=(self.GRID_DELTA[1] - 3, self.GRID_DELTA[1] + 3),
|
|
|
|
edge_range=(area[1], area[3])
|
|
|
|
)
|
2024-06-17 16:25:32 +00:00
|
|
|
# print(x_list)
|
|
|
|
# print(y_list)
|
2024-06-10 18:13:32 +00:00
|
|
|
|
|
|
|
def is_near_existing(p):
|
|
|
|
diff = np.linalg.norm(points - p, axis=1)
|
|
|
|
return np.any(diff < 3)
|
|
|
|
|
|
|
|
def iter_items():
|
|
|
|
y_max = -1
|
|
|
|
for y in y_list:
|
|
|
|
for x in x_list:
|
|
|
|
if is_near_existing((x, y)):
|
|
|
|
y_max = y
|
|
|
|
break
|
|
|
|
for yi, y in enumerate(y_list):
|
|
|
|
if y < y_max:
|
|
|
|
# Fill items
|
|
|
|
for xi, x in enumerate(x_list):
|
|
|
|
yield InventoryItem(main=self.main, loca=(xi, yi), point=(int(x), int(y)))
|
|
|
|
elif y == y_max:
|
|
|
|
# Fill until the last item
|
2024-06-19 14:20:40 +00:00
|
|
|
x_max = -1
|
2024-06-10 18:13:32 +00:00
|
|
|
for xi, x in enumerate(x_list):
|
|
|
|
if is_near_existing((x, y)):
|
2024-06-19 14:20:40 +00:00
|
|
|
x_max = xi
|
|
|
|
for xi, x in enumerate(x_list):
|
|
|
|
if xi <= x_max:
|
2024-06-10 18:13:32 +00:00
|
|
|
yield InventoryItem(main=self.main, loca=(xi, yi), point=(int(x), int(y)))
|
|
|
|
else:
|
|
|
|
break
|
|
|
|
|
|
|
|
# Re-generate items
|
|
|
|
self.items = {}
|
|
|
|
selected = []
|
|
|
|
for item in iter_items():
|
|
|
|
self.items[item.loca] = item
|
|
|
|
if item.is_selected:
|
|
|
|
selected.append(item)
|
|
|
|
|
|
|
|
# Check selected
|
|
|
|
self.selected = None
|
|
|
|
count = len(selected)
|
|
|
|
if count == 0:
|
|
|
|
# logger.warning('Inventory has no item selected')
|
|
|
|
pass
|
|
|
|
elif count > 1:
|
|
|
|
logger.warning(f'Inventory has multiple items selected: {selected}')
|
|
|
|
self.selected = selected[0]
|
|
|
|
else:
|
|
|
|
self.selected = selected[0]
|
|
|
|
|
2024-06-20 18:24:03 +00:00
|
|
|
count = len(self.items)
|
|
|
|
logger.info(f'Inventory: {count} items, selected {self.selected}')
|
|
|
|
if count > self.MAXIMUM_ITEMS:
|
|
|
|
logger.warning('Too many inventory items detected')
|
2024-06-10 18:13:32 +00:00
|
|
|
|
|
|
|
def get_row_first(self, row=1, first=0) -> InventoryItem | None:
|
|
|
|
"""
|
|
|
|
Get the first item of the next row
|
|
|
|
|
|
|
|
Args:
|
|
|
|
row: 1 for next row, -1 for prev row
|
|
|
|
first: 0 for the first_item
|
|
|
|
"""
|
|
|
|
if self.selected == None:
|
|
|
|
return None
|
|
|
|
loca = self.selected.loca
|
|
|
|
loca = (first, loca[1] + row)
|
|
|
|
try:
|
|
|
|
return self.items[loca]
|
|
|
|
except KeyError:
|
|
|
|
return None
|
|
|
|
|
|
|
|
def get_right(self) -> InventoryItem | None:
|
|
|
|
"""
|
|
|
|
Get the right item of the selected
|
|
|
|
"""
|
|
|
|
if self.selected == None:
|
|
|
|
return None
|
|
|
|
loca = self.selected.loca
|
|
|
|
loca = (loca[0] + 1, loca[1])
|
|
|
|
try:
|
|
|
|
return self.items[loca]
|
|
|
|
except KeyError:
|
|
|
|
return None
|
|
|
|
|
|
|
|
def get_first(self) -> InventoryItem | None:
|
|
|
|
"""
|
|
|
|
Get the first item of inventory
|
|
|
|
"""
|
|
|
|
try:
|
|
|
|
return self.items[(0, 0)]
|
|
|
|
except KeyError:
|
|
|
|
return None
|
|
|
|
|
|
|
|
def select(self, item, skip_first_screenshot=True):
|
|
|
|
logger.info(f'Inventory select {item}')
|
|
|
|
if isinstance(item, InventoryItem):
|
2024-06-20 18:24:03 +00:00
|
|
|
loca = item.loca
|
2024-06-10 18:13:32 +00:00
|
|
|
else:
|
2024-06-20 18:24:03 +00:00
|
|
|
loca = item
|
2024-06-10 18:13:32 +00:00
|
|
|
|
|
|
|
interval = Timer(2, count=6)
|
2024-07-05 13:27:12 +00:00
|
|
|
clicked = False
|
2024-06-10 18:13:32 +00:00
|
|
|
while 1:
|
|
|
|
if skip_first_screenshot:
|
|
|
|
skip_first_screenshot = False
|
|
|
|
else:
|
|
|
|
self.main.device.screenshot()
|
|
|
|
|
2024-06-20 18:24:03 +00:00
|
|
|
self.update()
|
|
|
|
if len(self.items) > self.MAXIMUM_ITEMS:
|
|
|
|
continue
|
|
|
|
try:
|
|
|
|
item = self.items[loca]
|
|
|
|
except KeyError:
|
|
|
|
logger.warning(f'Item {loca} is not in inventory, cannot select')
|
|
|
|
continue
|
|
|
|
|
2024-06-10 18:13:32 +00:00
|
|
|
# End
|
2024-07-05 13:27:12 +00:00
|
|
|
if clicked and item.is_selected:
|
2024-06-10 18:13:32 +00:00
|
|
|
logger.info('Inventory item selected')
|
|
|
|
break
|
|
|
|
# Click
|
|
|
|
if interval.reached():
|
|
|
|
self.main.device.click(item)
|
|
|
|
interval.reset()
|
2024-07-05 13:27:12 +00:00
|
|
|
clicked = True
|
2024-06-20 18:24:03 +00:00
|
|
|
continue
|
2024-06-10 18:13:32 +00:00
|
|
|
|
|
|
|
def wait_selected(self, skip_first_screenshot=True):
|
2024-06-19 14:55:09 +00:00
|
|
|
"""
|
|
|
|
Args:
|
|
|
|
skip_first_screenshot:
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
bool: If success
|
|
|
|
"""
|
2024-06-10 18:13:32 +00:00
|
|
|
timeout = Timer(2, count=6).start()
|
|
|
|
while 1:
|
|
|
|
if skip_first_screenshot:
|
|
|
|
skip_first_screenshot = False
|
|
|
|
else:
|
|
|
|
self.main.device.screenshot()
|
|
|
|
|
|
|
|
self.update()
|
|
|
|
if timeout.reached():
|
|
|
|
logger.warning('Wait inventory selected timeout')
|
2024-06-19 14:55:09 +00:00
|
|
|
return False
|
2024-06-20 18:24:03 +00:00
|
|
|
if len(self.items) > self.MAXIMUM_ITEMS:
|
|
|
|
continue
|
|
|
|
if self.selected is not None:
|
|
|
|
return True
|