2023-07-30 15:30:17 +00:00
|
|
|
from dataclasses import dataclass
|
|
|
|
from typing import Any
|
|
|
|
|
|
|
|
import cv2
|
|
|
|
import numpy as np
|
|
|
|
from scipy import signal
|
|
|
|
|
|
|
|
from module.base.utils import (
|
|
|
|
area_offset,
|
|
|
|
area_pad,
|
|
|
|
color_similarity_2d,
|
|
|
|
crop,
|
|
|
|
get_bbox,
|
|
|
|
image_size,
|
|
|
|
rgb2yuv
|
|
|
|
)
|
|
|
|
from module.logger import logger
|
|
|
|
from tasks.map.minimap.utils import (
|
|
|
|
convolve,
|
|
|
|
cubic_find_maximum,
|
|
|
|
image_center_crop,
|
|
|
|
map_image_preprocess,
|
|
|
|
peak_confidence
|
|
|
|
)
|
|
|
|
from tasks.map.resource.resource import MapResource
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
|
class PositionPredictState:
|
|
|
|
size: Any = None
|
|
|
|
scale: Any = None
|
|
|
|
|
|
|
|
search_area: Any = None
|
|
|
|
search_image: Any = None
|
|
|
|
result_mask: Any = None
|
|
|
|
result: Any = None
|
|
|
|
|
|
|
|
sim: Any = None
|
|
|
|
loca: Any = None
|
|
|
|
local_sim: Any = None
|
|
|
|
local_loca: Any = None
|
|
|
|
precise_sim: Any = None
|
|
|
|
precise_loca: Any = None
|
|
|
|
|
|
|
|
global_loca: Any = None
|
|
|
|
|
|
|
|
|
|
|
|
class Minimap(MapResource):
|
2023-09-22 04:34:12 +00:00
|
|
|
def init_position(self, position: tuple[int | float, int | float]):
|
2023-07-30 15:30:17 +00:00
|
|
|
logger.info(f"init_position:{position}")
|
|
|
|
self.position = position
|
|
|
|
|
|
|
|
def _predict_position(self, image, scale=1.0):
|
|
|
|
"""
|
|
|
|
Args:
|
|
|
|
image:
|
|
|
|
scale:
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
PositionPredictState:
|
|
|
|
"""
|
|
|
|
scale *= self.POSITION_SEARCH_SCALE
|
|
|
|
local = cv2.resize(image, None, fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC)
|
|
|
|
size = np.array(image_size(image))
|
|
|
|
|
|
|
|
if sum(self.position) > 0:
|
|
|
|
search_position = np.array(self.position, dtype=np.int64)
|
|
|
|
search_position += self.POSITION_FEATURE_PAD
|
|
|
|
search_size = np.array(image_size(local)) * self.POSITION_SEARCH_RADIUS
|
2023-08-18 19:10:49 +00:00
|
|
|
search_half = (search_size // 2).astype(np.int64)
|
2023-07-30 15:30:17 +00:00
|
|
|
search_area = area_offset((0, 0, *(search_half * 2)), offset=-search_half)
|
|
|
|
search_area = area_offset(search_area, offset=np.multiply(search_position, self.POSITION_SEARCH_SCALE))
|
|
|
|
search_area = np.array(search_area).astype(np.int64)
|
|
|
|
search_image = crop(self.assets_floor_feat, search_area, copy=False)
|
|
|
|
result_mask = crop(self.assets_floor_outside_mask, search_area, copy=False)
|
|
|
|
else:
|
|
|
|
search_area = (0, 0, *image_size(local))
|
|
|
|
search_image = self.assets_floor_feat
|
|
|
|
result_mask = self.assets_floor_outside_mask
|
|
|
|
|
|
|
|
# if round(scale, 5) == self.POSITION_SEARCH_SCALE * 1.0:
|
|
|
|
# Image.fromarray((local).astype(np.uint8)).save('local.png')
|
|
|
|
# Image.fromarray((search_image).astype(np.uint8)).save('search_image.png')
|
|
|
|
|
|
|
|
# Using mask will take 3 times as long
|
|
|
|
# mask = self.get_circle_mask(local)
|
|
|
|
# result = cv2.matchTemplate(search_image, local, cv2.TM_CCOEFF_NORMED, mask=mask)
|
|
|
|
result = cv2.matchTemplate(search_image, local, cv2.TM_CCOEFF_NORMED)
|
|
|
|
result_mask = image_center_crop(result_mask, size=image_size(result))
|
|
|
|
result[result_mask] = 0
|
|
|
|
_, sim, _, loca = cv2.minMaxLoc(result)
|
|
|
|
# if round(scale, 3) == self.POSITION_SEARCH_SCALE * 1.0:
|
|
|
|
# result[result <= 0] = 0
|
|
|
|
# Image.fromarray((result * 255).astype(np.uint8)).save('match_result.png')
|
|
|
|
|
|
|
|
# Gaussian filter to get local maximum
|
|
|
|
local_maximum = cv2.subtract(result, cv2.GaussianBlur(result, (5, 5), 0))
|
|
|
|
_, local_sim, _, local_loca = cv2.minMaxLoc(local_maximum)
|
|
|
|
# if round(scale, 5) == self.POSITION_SEARCH_SCALE * 1.0:
|
|
|
|
# local_maximum[local_maximum < 0] = 0
|
|
|
|
# local_maximum[local_maximum > 0.1] = 0.1
|
|
|
|
# Image.fromarray((local_maximum * 255 * 10).astype(np.uint8)).save('local_maximum.png')
|
|
|
|
|
|
|
|
# Calculate the precise location using CUBIC
|
|
|
|
# precise = crop(result, area=area_offset((-4, -4, 4, 4), offset=local_loca))
|
|
|
|
# precise_sim, precise_loca = cubic_find_maximum(precise, precision=0.05)
|
|
|
|
# precise_loca -= 5
|
|
|
|
precise_loca = np.array((0, 0))
|
|
|
|
precise_sim = result[local_loca[1], local_loca[0]]
|
|
|
|
state = PositionPredictState(
|
|
|
|
size=size, scale=scale,
|
|
|
|
search_area=search_area, search_image=search_image, result_mask=result_mask, result=result,
|
|
|
|
sim=sim, loca=loca, local_sim=local_sim, local_loca=local_loca,
|
|
|
|
precise_sim=precise_sim, precise_loca=precise_loca,
|
|
|
|
)
|
|
|
|
|
|
|
|
# Location on search_image
|
|
|
|
lookup_loca = precise_loca + local_loca + size * scale / 2
|
|
|
|
# Location on GIMAP
|
|
|
|
global_loca = (lookup_loca + search_area[:2]) / self.POSITION_SEARCH_SCALE
|
|
|
|
# Can't figure out why but the result_of_0.5_lookup_scale + 0.5 ~= result_of_1.0_lookup_scale
|
|
|
|
global_loca += self.POSITION_MOVE_PATCH
|
|
|
|
# Move to the origin point of map
|
|
|
|
global_loca -= self.POSITION_FEATURE_PAD
|
|
|
|
|
|
|
|
state.global_loca = global_loca
|
|
|
|
|
|
|
|
return state
|
|
|
|
|
|
|
|
def _predict_precise_position(self, state):
|
|
|
|
"""
|
|
|
|
Args:
|
|
|
|
result (PositionPredictState):
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
PositionPredictState
|
|
|
|
"""
|
|
|
|
size = state.size
|
|
|
|
scale = state.scale
|
|
|
|
search_area = state.search_area
|
|
|
|
result = state.result
|
|
|
|
loca = state.loca
|
|
|
|
local_loca = state.local_loca
|
|
|
|
|
|
|
|
precise = crop(result, area=area_offset((-4, -4, 4, 4), offset=loca))
|
|
|
|
precise_sim, precise_loca = cubic_find_maximum(precise, precision=0.05)
|
|
|
|
precise_loca -= 5
|
|
|
|
|
|
|
|
state.precise_sim = precise_sim
|
|
|
|
state.precise_loca = precise_loca
|
|
|
|
|
|
|
|
# Location on search_image
|
|
|
|
lookup_loca = precise_loca + local_loca + size * scale / 2
|
|
|
|
# Location on GIMAP
|
|
|
|
global_loca = (lookup_loca + search_area[:2]) / self.POSITION_SEARCH_SCALE
|
|
|
|
# Can't figure out why but the result_of_0.5_lookup_scale + 0.5 ~= result_of_1.0_lookup_scale
|
|
|
|
global_loca += self.POSITION_MOVE_PATCH
|
|
|
|
# Move to the origin point of map
|
|
|
|
global_loca -= self.POSITION_FEATURE_PAD
|
|
|
|
|
|
|
|
state.global_loca = global_loca
|
|
|
|
|
|
|
|
return state
|
|
|
|
|
|
|
|
def update_position(self, image):
|
|
|
|
"""
|
|
|
|
Get position on GIMAP, costs about 6.57ms.
|
|
|
|
|
|
|
|
The following attributes will be set:
|
|
|
|
- position_similarity
|
|
|
|
- position
|
|
|
|
- position_scene
|
|
|
|
"""
|
|
|
|
image = self.get_minimap(image, self.POSITION_RADIUS)
|
|
|
|
image = map_image_preprocess(image)
|
|
|
|
image &= self.get_circle_mask(image)
|
|
|
|
|
|
|
|
best_sim = -1.
|
|
|
|
best_scale = 1.0
|
|
|
|
best_state = None
|
|
|
|
# Walking is in scale 1.20
|
|
|
|
# Running is in scale 1.25
|
|
|
|
scale_list = [1.00, 1.05, 1.10, 1.15, 1.20, 1.25]
|
|
|
|
|
|
|
|
for scale in scale_list:
|
|
|
|
state = self._predict_position(image, scale)
|
|
|
|
# print([np.round(i, 3) for i in [scale, state.sim, state.local_sim, state.global_loca]])
|
|
|
|
if state.sim > best_sim:
|
|
|
|
best_sim = state.sim
|
|
|
|
best_scale = scale
|
|
|
|
best_state = state
|
|
|
|
|
|
|
|
best_state = self._predict_precise_position(best_state)
|
|
|
|
|
|
|
|
self.position_similarity = round(best_state.precise_sim, 3)
|
|
|
|
self.position_similarity_local = round(best_state.local_sim, 3)
|
|
|
|
self.position = tuple(np.round(best_state.global_loca, 1))
|
|
|
|
self.position_scale = round(best_scale, 3)
|
|
|
|
return self.position
|
|
|
|
|
|
|
|
def update_direction(self, image):
|
|
|
|
"""
|
|
|
|
Get direction of character, costs about 0.64ms.
|
|
|
|
|
|
|
|
The following attributes will be set:
|
|
|
|
- direction_similarity
|
|
|
|
- direction
|
|
|
|
"""
|
|
|
|
image = self.get_minimap(image, self.DIRECTION_RADIUS)
|
|
|
|
|
|
|
|
image = color_similarity_2d(image, color=self.DIRECTION_ARROW_COLOR)
|
|
|
|
try:
|
|
|
|
area = area_pad(get_bbox(image, threshold=128), pad=-1)
|
|
|
|
except IndexError:
|
|
|
|
# IndexError: index 0 is out of bounds for axis 0 with size 0
|
|
|
|
logger.warning('No direction arrow on minimap')
|
|
|
|
return
|
|
|
|
|
|
|
|
image = crop(image, area=area)
|
|
|
|
scale = self.DIRECTION_ROTATION_SCALE * self.DIRECTION_SEARCH_SCALE
|
|
|
|
mapping = cv2.resize(image, None, fx=scale, fy=scale, interpolation=cv2.INTER_NEAREST)
|
|
|
|
result = cv2.matchTemplate(self.ArrowRotateMap, mapping, cv2.TM_CCOEFF_NORMED)
|
|
|
|
result = cv2.subtract(result, cv2.GaussianBlur(result, (5, 5), 0))
|
|
|
|
_, sim, _, loca = cv2.minMaxLoc(result)
|
|
|
|
loca = np.array(loca) / self.DIRECTION_SEARCH_SCALE // (self.DIRECTION_RADIUS * 2)
|
|
|
|
degree = int((loca[0] + loca[1] * 8) * 5)
|
|
|
|
|
|
|
|
def to_map(x):
|
|
|
|
return int((x * self.DIRECTION_RADIUS * 2 + self.DIRECTION_RADIUS) * self.POSITION_SEARCH_SCALE)
|
|
|
|
|
|
|
|
# Row on ArrowRotateMapAll
|
|
|
|
row = int(degree // 8) + 45
|
|
|
|
# Calculate +-1 rows to get result with a precision of 1
|
|
|
|
row = (row - 2, row + 3)
|
|
|
|
# Convert to ArrowRotateMapAll and to be 5px larger
|
|
|
|
row = (to_map(row[0]) - 5, to_map(row[1]) + 5)
|
|
|
|
|
|
|
|
precise_map = self.ArrowRotateMapAll[row[0]:row[1], :]
|
|
|
|
result = cv2.matchTemplate(precise_map, mapping, cv2.TM_CCOEFF_NORMED)
|
|
|
|
result = cv2.subtract(result, cv2.GaussianBlur(result, (5, 5), 0))
|
|
|
|
|
|
|
|
def to_map(x):
|
|
|
|
return int((x * self.DIRECTION_RADIUS * 2) * self.POSITION_SEARCH_SCALE)
|
|
|
|
|
|
|
|
def get_precise_sim(d):
|
|
|
|
y, x = divmod(d, 8)
|
|
|
|
im = result[to_map(y):to_map(y + 1), to_map(x):to_map(x + 1)]
|
|
|
|
_, sim, _, _ = cv2.minMaxLoc(im)
|
|
|
|
return sim
|
|
|
|
|
|
|
|
precise = np.array([[get_precise_sim(_) for _ in range(24)]])
|
|
|
|
precise_sim, precise_loca = cubic_find_maximum(precise, precision=0.1)
|
|
|
|
precise_loca = degree // 8 * 8 - 8 + precise_loca[0]
|
|
|
|
|
|
|
|
self.direction_similarity = round(precise_sim, 3)
|
|
|
|
self.direction = precise_loca % 360
|
|
|
|
|
|
|
|
def update_rotation(self, image):
|
|
|
|
"""
|
|
|
|
Get direction of character, costs about 0.66ms.
|
|
|
|
|
|
|
|
The following attributes will be set:
|
|
|
|
- direction_similarity
|
|
|
|
- direction
|
|
|
|
"""
|
|
|
|
d = self.MINIMAP_RADIUS * 2
|
|
|
|
scale = 1
|
|
|
|
|
|
|
|
# Extract
|
|
|
|
minimap = self.get_minimap(image, radius=self.MINIMAP_RADIUS)
|
|
|
|
_, _, v = cv2.split(rgb2yuv(minimap))
|
|
|
|
|
2023-08-18 19:10:49 +00:00
|
|
|
image = cv2.subtract(128, v)
|
|
|
|
|
|
|
|
image = cv2.GaussianBlur(image, (3, 3), 0)
|
2023-07-30 15:30:17 +00:00
|
|
|
# Expand circle into rectangle
|
2023-08-18 19:10:49 +00:00
|
|
|
remap = cv2.remap(image, *self.RotationRemapData, cv2.INTER_LINEAR)[d * 1 // 10:d * 6 // 10].astype(np.float32)
|
2023-07-30 15:30:17 +00:00
|
|
|
remap = cv2.resize(remap, None, fx=scale, fy=scale, interpolation=cv2.INTER_LINEAR)
|
|
|
|
# Find derivative
|
|
|
|
gradx = cv2.Scharr(remap, cv2.CV_32F, 1, 0)
|
|
|
|
# import matplotlib.pyplot as plt
|
|
|
|
# plt.imshow(gradx)
|
|
|
|
# plt.show()
|
|
|
|
|
|
|
|
# Magic parameters for scipy.find_peaks
|
|
|
|
para = {
|
|
|
|
# 'height': (50, 800),
|
2023-08-18 19:10:49 +00:00
|
|
|
'height': 35,
|
2023-07-30 15:30:17 +00:00
|
|
|
# 'prominence': (0, 400),
|
|
|
|
# 'width': (0, d * scale / 20),
|
|
|
|
# 'distance': d * scale / 18,
|
|
|
|
'wlen': d * scale,
|
|
|
|
}
|
|
|
|
# plt.plot(gradx[d * 3 // 10])
|
|
|
|
# plt.show()
|
|
|
|
|
|
|
|
# `l` for the left of sight area, derivative is positive
|
|
|
|
# `r` for the right of sight area, derivative is negative
|
|
|
|
l = np.bincount(signal.find_peaks(gradx.ravel(), **para)[0] % (d * scale), minlength=d * scale)
|
|
|
|
r = np.bincount(signal.find_peaks(-gradx.ravel(), **para)[0] % (d * scale), minlength=d * scale)
|
|
|
|
l, r = np.maximum(l - r, 0), np.maximum(r - l, 0)
|
|
|
|
# plt.plot(l)
|
|
|
|
# plt.plot(np.roll(r, -d * scale // 4))
|
|
|
|
# plt.show()
|
|
|
|
|
|
|
|
conv0 = []
|
|
|
|
kernel = 2 * scale
|
|
|
|
r_expanded = np.concatenate([r, r, r])
|
|
|
|
r_length = len(r)
|
|
|
|
|
|
|
|
# Faster than nested calling np.roll()
|
|
|
|
def roll_r(shift):
|
|
|
|
return r_expanded[r_length - shift:r_length * 2 - shift]
|
|
|
|
|
|
|
|
def convolve_r(ker, shift):
|
|
|
|
return sum(roll_r(shift + i) * (ker - abs(i)) // ker for i in range(-ker + 1, ker))
|
|
|
|
|
|
|
|
for offset in range(-kernel + 1, kernel):
|
|
|
|
result = l * convolve_r(ker=3 * kernel, shift=-d * scale // 4 + offset)
|
|
|
|
# result = l * convolve(np.roll(r, -d * scale // 4 + offset), kernel=3 * scale)
|
|
|
|
# minus = l * convolve(np.roll(r, offset), kernel=10 * scale) // 5
|
|
|
|
# if offset == 0:
|
|
|
|
# plt.plot(result)
|
|
|
|
# plt.plot(-minus)
|
|
|
|
# plt.show()
|
|
|
|
# result -= minus
|
|
|
|
# result = convolve(result, kernel=3 * scale)
|
|
|
|
conv0 += [result]
|
|
|
|
# plt.figure(figsize=(20, 16))
|
|
|
|
# for row in conv0:
|
|
|
|
# plt.plot(row)
|
|
|
|
# plt.show()
|
|
|
|
|
|
|
|
conv0 = np.maximum(conv0, 1)
|
|
|
|
maximum = np.max(conv0, axis=0)
|
|
|
|
rotation_confidence = round(peak_confidence(maximum), 3)
|
|
|
|
if rotation_confidence > 0.3:
|
|
|
|
# Good match
|
|
|
|
result = maximum
|
|
|
|
else:
|
|
|
|
# Convolve again to reduce noice
|
|
|
|
average = np.mean(conv0, axis=0)
|
|
|
|
minimum = np.min(conv0, axis=0)
|
|
|
|
result = convolve(maximum * average * minimum, 2 * scale)
|
|
|
|
rotation_confidence = round(peak_confidence(maximum), 3)
|
|
|
|
# plt.plot(maximum)
|
|
|
|
# plt.plot(result)
|
|
|
|
# plt.show()
|
|
|
|
|
|
|
|
# Convert match point to degree
|
|
|
|
degree = np.argmax(result) / (d * scale) * 360 + 135
|
|
|
|
degree = int(degree % 360)
|
|
|
|
# +3 is a value obtained from experience
|
|
|
|
# Don't know why but <predicted_rotation> + 3 = <actual_rotation>
|
|
|
|
rotation = degree + 3
|
|
|
|
|
|
|
|
self.rotation_confidence = rotation_confidence
|
|
|
|
self.rotation = rotation
|
|
|
|
|
2023-08-18 19:10:49 +00:00
|
|
|
def update(self, image, show_log=True):
|
2023-07-30 15:30:17 +00:00
|
|
|
"""
|
|
|
|
Update minimap, costs about 7.88ms.
|
|
|
|
"""
|
|
|
|
self.update_position(image)
|
|
|
|
self.update_direction(image)
|
|
|
|
self.update_rotation(image)
|
2023-08-18 19:10:49 +00:00
|
|
|
if show_log:
|
|
|
|
self.log_minimap()
|
2023-07-30 15:30:17 +00:00
|
|
|
|
2023-08-06 14:19:10 +00:00
|
|
|
def log_minimap(self):
|
2023-07-30 15:30:17 +00:00
|
|
|
# MiniMap P:(567.5, 862.8) (1.00x|0.439|0.157), D:303.8 (0.253), R:304 (0.846)
|
|
|
|
logger.info(
|
|
|
|
f'MiniMap '
|
|
|
|
f'P:({self.position[0]:.1f}, {self.position[1]:.1f}) '
|
|
|
|
f'({self.position_scale:.2f}x|{self.position_similarity:.3f}|{self.position_similarity_local:.3f}), '
|
|
|
|
f'D:{self.direction:.1f} ({self.direction_similarity:.3f}), '
|
|
|
|
f'R:{self.rotation} ({self.rotation_confidence:.3f})'
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
"""
|
|
|
|
Run mimimap tracking test.
|
|
|
|
"""
|
|
|
|
from tasks.base.ui import UI
|
|
|
|
|
|
|
|
# Uncomment this to use local srcmap instead of the pre-built one
|
|
|
|
# MapResource.SRCMAP = '../srcmap/srcmap'
|
|
|
|
self = Minimap()
|
|
|
|
# Set plane, assume starting from Jarilo_AdministrativeDistrict
|
2023-09-22 04:34:12 +00:00
|
|
|
self.set_plane('Jarilo_BackwaterPass', floor='F1')
|
2023-07-30 15:30:17 +00:00
|
|
|
|
2023-09-21 16:23:00 +00:00
|
|
|
ui = UI('src')
|
2023-07-30 15:30:17 +00:00
|
|
|
ui.device.disable_stuck_detection()
|
|
|
|
# Set starter point. Starter point will be calculated if it's missing but may contain errors.
|
|
|
|
# With starter point set, position is only searched around starter point and new position becomes new starter point.
|
|
|
|
# self.init_position((337, 480))
|
|
|
|
while 1:
|
|
|
|
ui.device.screenshot()
|
|
|
|
self.update(ui.device.image)
|
|
|
|
self.show_minimap()
|