diff --git a/module/base/utils/utils.py b/module/base/utils/utils.py index 4f2abea70..c3d919136 100644 --- a/module/base/utils/utils.py +++ b/module/base/utils/utils.py @@ -625,17 +625,29 @@ def image_paste(image, background, origin): def rgb2gray(image): """ + gray = ( MAX(r, g, b) + MIN(r, g, b)) / 2 + Args: image (np.ndarray): Shape (height, width, channel) Returns: np.ndarray: Shape (height, width) """ + # r, g, b = cv2.split(image) + # return cv2.add( + # cv2.multiply(cv2.max(cv2.max(r, g), b), 0.5), + # cv2.multiply(cv2.min(cv2.min(r, g), b), 0.5) + # ) r, g, b = cv2.split(image) - return cv2.add( - cv2.multiply(cv2.max(cv2.max(r, g), b), 0.5), - cv2.multiply(cv2.min(cv2.min(r, g), b), 0.5) - ) + maximum = cv2.max(r, g) + cv2.max(maximum, b, dst=maximum) + cv2.convertScaleAbs(maximum, alpha=0.5, dst=maximum) + cv2.min(r, g, dst=r) + cv2.min(r, b, dst=r) + cv2.convertScaleAbs(r, alpha=0.5, dst=r) + # minimum = r + cv2.add(maximum, r, dst=maximum) + return maximum def rgb2hsv(image): @@ -791,11 +803,24 @@ def color_similarity_2d(image, color): Returns: np.ndarray: uint8 """ - r, g, b = cv2.split(cv2.subtract(image, (*color, 0))) - positive = cv2.max(cv2.max(r, g), b) - r, g, b = cv2.split(cv2.subtract((*color, 0), image)) - negative = cv2.max(cv2.max(r, g), b) - return cv2.subtract(255, cv2.add(positive, negative)) + # r, g, b = cv2.split(cv2.subtract(image, (*color, 0))) + # positive = cv2.max(cv2.max(r, g), b) + # r, g, b = cv2.split(cv2.subtract((*color, 0), image)) + # negative = cv2.max(cv2.max(r, g), b) + # return cv2.subtract(255, cv2.add(positive, negative)) + diff = cv2.subtract(image, (*color, 0)) + r, g, b = cv2.split(diff) + cv2.max(r, g, dst=r) + cv2.max(r, b, dst=r) + positive = r + cv2.subtract((*color, 0), image, dst=diff) + r, g, b = cv2.split(diff) + cv2.max(r, g, dst=r) + cv2.max(r, b, dst=r) + negative = r + cv2.add(positive, negative, dst=positive) + cv2.subtract(255, positive, dst=positive) + return positive def extract_letters(image, letter=(255, 255, 255), threshold=128): @@ -809,11 +834,24 @@ def extract_letters(image, letter=(255, 255, 255), threshold=128): Returns: np.ndarray: Shape (height, width) """ - r, g, b = cv2.split(cv2.subtract(image, (*letter, 0))) - positive = cv2.max(cv2.max(r, g), b) - r, g, b = cv2.split(cv2.subtract((*letter, 0), image)) - negative = cv2.max(cv2.max(r, g), b) - return cv2.multiply(cv2.add(positive, negative), 255.0 / threshold) + # r, g, b = cv2.split(cv2.subtract(image, (*letter, 0))) + # positive = cv2.max(cv2.max(r, g), b) + # r, g, b = cv2.split(cv2.subtract((*letter, 0), image)) + # negative = cv2.max(cv2.max(r, g), b) + # return cv2.multiply(cv2.add(positive, negative), 255.0 / threshold) + diff = cv2.subtract(image, (*letter, 0)) + r, g, b = cv2.split(diff) + cv2.max(r, g, dst=r) + cv2.max(r, b, dst=r) + positive = r + cv2.subtract((*letter, 0), image, dst=diff) + r, g, b = cv2.split(diff) + cv2.max(r, g, dst=r) + cv2.max(r, b, dst=r) + negative = r + cv2.add(positive, negative, dst=positive) + cv2.convertScaleAbs(positive, alpha=255.0 / threshold, dst=positive) + return positive def extract_white_letters(image, threshold=128): @@ -827,10 +865,21 @@ def extract_white_letters(image, threshold=128): Returns: np.ndarray: Shape (height, width) """ + # minimum = cv2.min(cv2.min(r, g), b) + # maximum = cv2.max(cv2.max(r, g), b) + # return cv2.multiply(cv2.add(maximum, cv2.subtract(maximum, minimum)), 255.0 / threshold) r, g, b = cv2.split(cv2.subtract((255, 255, 255, 0), image)) - minimum = cv2.min(cv2.min(r, g), b) - maximum = cv2.max(cv2.max(r, g), b) - return cv2.multiply(cv2.add(maximum, cv2.subtract(maximum, minimum)), 255.0 / threshold) + maximum = cv2.max(r, g) + cv2.max(maximum, b, dst=maximum) + cv2.convertScaleAbs(maximum, alpha=0.5, dst=maximum) + cv2.min(r, g, dst=r) + cv2.min(r, b, dst=r) + cv2.convertScaleAbs(r, alpha=0.5, dst=r) + minimum = r + cv2.subtract(maximum, minimum, dst=minimum) + cv2.add(maximum, minimum, dst=maximum) + cv2.convertScaleAbs(maximum, alpha=255.0 / threshold, dst=maximum) + return maximum def color_mapping(image, max_multiply=2): @@ -849,7 +898,9 @@ def color_mapping(image, max_multiply=2): low, high = np.min(image), np.max(image) multiply = min(255 / (high - low), max_multiply) add = (255 - multiply * (low + high)) / 2 - image = cv2.add(cv2.multiply(image, multiply), add) + # image = cv2.add(cv2.multiply(image, multiply), add) + cv2.multiply(image, multiply, dst=image) + cv2.add(image, add, dst=image) image[image > 255] = 255 image[image < 0] = 0 return image.astype(np.uint8) @@ -909,7 +960,7 @@ def color_bar_percentage(image, area, prev_color, reverse=False, starter=0, thre Returns: float: 0 to 1. """ - image = crop(image, area) + image = crop(image, area, copy=False) image = image[:, ::-1, :] if reverse else image length = image.shape[1] prev_index = starter