mirror of
https://github.com/LmeSzinc/StarRailCopilot.git
synced 2024-11-21 08:18:18 +00:00
Add: Enemy and item detector
This commit is contained in:
parent
827ae2c76e
commit
d314bab51c
BIN
assets/mask/MASK_MAP_INTERACT.png
Normal file
BIN
assets/mask/MASK_MAP_INTERACT.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 4.1 KiB |
347
tasks/map/interact/aim.py
Normal file
347
tasks/map/interact/aim.py
Normal file
@ -0,0 +1,347 @@
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
from module.base.decorator import cached_property, del_cached_property
|
||||
from module.base.utils import Points, image_size, load_image
|
||||
from module.config.utils import dict_to_kv
|
||||
from module.logger import logger
|
||||
from tasks.base.ui import UI
|
||||
|
||||
|
||||
def inrange(image, lower=0, upper=255):
|
||||
"""
|
||||
Get the coordinates of pixels in range.
|
||||
Equivalent to `np.array(np.where(lower <= image <= upper))` but faster.
|
||||
Note that this method will change `image`.
|
||||
|
||||
`cv2.findNonZero()` is faster than `np.where`
|
||||
points = np.array(np.where(y > 24)).T[:, ::-1]
|
||||
points = np.array(cv2.findNonZero((y > 24).astype(np.uint8)))[:, 0, :]
|
||||
|
||||
`cv2.inRange(y, 24)` is faster than `y > 24`
|
||||
cv2.inRange(y, 24, 255, dst=y)
|
||||
y = y > 24
|
||||
|
||||
Returns:
|
||||
np.ndarray: Shape (N, 2)
|
||||
E.g. [[x1, y1], [x2, y2], ...]
|
||||
"""
|
||||
cv2.inRange(image, lower, upper, dst=image)
|
||||
try:
|
||||
return np.array(cv2.findNonZero(image))[:, 0, :]
|
||||
except IndexError:
|
||||
# Empty result
|
||||
# IndexError: too many indices for array: array is 0-dimensional, but 3 were indexed
|
||||
return np.array([])
|
||||
|
||||
|
||||
def subtract_blur(image, radius=3, negative=False):
|
||||
"""
|
||||
If you care performance more than quality:
|
||||
- radius=3, use medianBlur
|
||||
- radius=5,7,9,11, use GaussianBlur
|
||||
- radius>11, use stackBlur (requires opencv >= 4.7.0)
|
||||
|
||||
Args:
|
||||
image:
|
||||
radius:
|
||||
negative:
|
||||
|
||||
Returns:
|
||||
np.ndarray:
|
||||
"""
|
||||
if radius <= 3:
|
||||
blur = cv2.medianBlur(image, radius)
|
||||
elif radius <= 11:
|
||||
blur = cv2.GaussianBlur(image, (radius, radius), 0)
|
||||
else:
|
||||
blur = cv2.stackBlur(image, (radius, radius), 0)
|
||||
|
||||
if negative:
|
||||
cv2.subtract(blur, image, dst=blur)
|
||||
else:
|
||||
cv2.subtract(image, blur, dst=blur)
|
||||
return blur
|
||||
|
||||
|
||||
def remove_border(image, radius):
|
||||
"""
|
||||
Paint edge pixels black.
|
||||
No returns, changes are written to `image`
|
||||
|
||||
Args:
|
||||
image:
|
||||
radius:
|
||||
"""
|
||||
width, height = image_size(image)
|
||||
image[:, :radius + 1] = 0
|
||||
image[:, width - radius:] = 0
|
||||
image[:radius + 1, :] = 0
|
||||
image[height - radius:, :] = 0
|
||||
|
||||
|
||||
def create_circle(min_radius, max_radius):
|
||||
"""
|
||||
Create a circle with min_radius <= R <= max_radius.
|
||||
1 represents circle, 0 represents background
|
||||
|
||||
Args:
|
||||
min_radius:
|
||||
max_radius:
|
||||
|
||||
Returns:
|
||||
np.ndarray:
|
||||
"""
|
||||
circle = np.ones((max_radius * 2 + 1, max_radius * 2 + 1), dtype=np.uint8)
|
||||
center = np.array((max_radius, max_radius))
|
||||
points = np.array(np.meshgrid(np.arange(circle.shape[0]), np.arange(circle.shape[1]))).T
|
||||
distance = np.linalg.norm(points - center, axis=2)
|
||||
circle[distance < min_radius] = 0
|
||||
circle[distance > max_radius] = 0
|
||||
return circle
|
||||
|
||||
|
||||
def draw_circle(image, circle, points):
|
||||
"""
|
||||
Add a circle onto image.
|
||||
No returns, changes are written to `image`
|
||||
|
||||
Args:
|
||||
image:
|
||||
circle: Created from create_circle()
|
||||
points: (x, y), center of the circle to draw
|
||||
"""
|
||||
width, height = image_size(circle)
|
||||
x1 = -int(width // 2)
|
||||
y1 = -int(height // 2)
|
||||
x2 = width + x1
|
||||
y2 = height + y1
|
||||
for point in points:
|
||||
x, y = point
|
||||
# Fancy index is faster
|
||||
index = image[y + y1:y + y2, x + x1:x + x2]
|
||||
# print(index.shape)
|
||||
cv2.add(index, circle, dst=index)
|
||||
|
||||
|
||||
class Aim:
|
||||
radius_enemy = (24, 25)
|
||||
radius_item = (8, 10)
|
||||
|
||||
def __init__(self):
|
||||
self.debug = False
|
||||
|
||||
self.draw_item = None
|
||||
self.draw_enemy = None
|
||||
self.points_item = None
|
||||
self.points_enemy = None
|
||||
|
||||
def clear_image_cache(self):
|
||||
self.draw_item = None
|
||||
self.draw_enemy = None
|
||||
self.points_item = None
|
||||
self.points_enemy = None
|
||||
del_cached_property(self, 'aimed_enemy')
|
||||
del_cached_property(self, 'aimed_item')
|
||||
|
||||
@cached_property
|
||||
def mask_interact(self):
|
||||
return load_image('./assets/mask/MASK_MAP_INTERACT.png')
|
||||
|
||||
@cached_property
|
||||
def circle_enemy(self):
|
||||
return create_circle(*self.radius_enemy)
|
||||
|
||||
@cached_property
|
||||
def circle_item(self):
|
||||
return create_circle(*self.radius_item)
|
||||
|
||||
# @timer
|
||||
def predict_enemy(self, h, v):
|
||||
min_radius, max_radius = self.radius_enemy
|
||||
width, height = image_size(v)
|
||||
|
||||
# Get white circle `y`
|
||||
y = subtract_blur(h, 3, negative=False)
|
||||
cv2.inRange(h, 168, 255, h)
|
||||
cv2.bitwise_and(y, h, dst=y)
|
||||
# Get red glow `v`
|
||||
cv2.inRange(v, 168, 255, dst=v)
|
||||
|
||||
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
|
||||
cv2.dilate(v, kernel, dst=v)
|
||||
# Remove noise and leave red circle only
|
||||
cv2.bitwise_and(y, v, dst=y)
|
||||
# cv2.imshow('predict_enemy', y)
|
||||
# Remove game UI
|
||||
cv2.bitwise_and(y, self.mask_interact, dst=y)
|
||||
# Remove points on the edge, or draw_circle() will overflow
|
||||
remove_border(y, max_radius)
|
||||
|
||||
# Get all pixels
|
||||
points = inrange(y, lower=18)
|
||||
if points.shape[0] > 1000:
|
||||
logger.warning(f'AimDetector.predict_enemy() too many points to draw: {points.shape}')
|
||||
# Draw circles
|
||||
draw = np.zeros((height, width), dtype=np.uint8)
|
||||
draw_circle(draw, self.circle_enemy, points)
|
||||
if self.debug:
|
||||
self.draw_enemy = cv2.multiply(draw, 4)
|
||||
subtract_blur(draw, 3)
|
||||
|
||||
# Find peaks
|
||||
points = inrange(draw, lower=36)
|
||||
points = Points(points).group(threshold=10)
|
||||
if points.shape[0] > 3:
|
||||
logger.warning(f'AimDetector.predict_enemy() too many peaks: {points.shape}')
|
||||
self.points_enemy = points
|
||||
# print(points)
|
||||
return points
|
||||
|
||||
# @timer
|
||||
def predict_item(self, v):
|
||||
min_radius, max_radius = self.radius_item
|
||||
width, height = image_size(v)
|
||||
|
||||
# Get white circle `y`
|
||||
y = subtract_blur(v, 9)
|
||||
white = cv2.inRange(v, 112, 144)
|
||||
cv2.bitwise_and(y, white, dst=y)
|
||||
# Get cyan glow `v`
|
||||
cv2.inRange(v, 0, 84, dst=v)
|
||||
|
||||
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
|
||||
cv2.dilate(v, kernel, dst=v)
|
||||
|
||||
# Remove noise and leave cyan circle only
|
||||
cv2.bitwise_and(y, v, dst=y)
|
||||
# Remove game UI
|
||||
cv2.bitwise_and(y, self.mask_interact, dst=y)
|
||||
# Remove points on the edge, or draw_circle() will overflow
|
||||
remove_border(y, max_radius)
|
||||
|
||||
# Get all pixels
|
||||
points = inrange(y, lower=18)
|
||||
# print(points.shape)
|
||||
if points.shape[0] > 1000:
|
||||
logger.warning(f'AimDetector.predict_item() too many points to draw: {points.shape}')
|
||||
# Draw circles
|
||||
draw = np.zeros((height, width), dtype=np.uint8)
|
||||
draw_circle(draw, self.circle_item, points)
|
||||
if self.debug:
|
||||
self.draw_item = cv2.multiply(draw, 2)
|
||||
subtract_blur(draw, 7)
|
||||
|
||||
# Find peaks
|
||||
points = inrange(draw, lower=64)
|
||||
points = Points(points).group(threshold=10)
|
||||
if points.shape[0] > 3:
|
||||
logger.warning(f'AimDetector.predict_item() too many peaks: {points.shape}')
|
||||
self.points_item = points
|
||||
# print(points)
|
||||
return points
|
||||
|
||||
# @timer
|
||||
def predict(self, image, enemy=True, item=True, show_log=True, debug=False):
|
||||
"""
|
||||
Predict `aim` on image, costs about 10.0~10.5ms.
|
||||
|
||||
Args:
|
||||
image:
|
||||
enemy: True to predict enemy
|
||||
item: True to predict item
|
||||
show_log:
|
||||
debug: True to show AimDetector image
|
||||
"""
|
||||
self.debug = debug
|
||||
self.clear_image_cache()
|
||||
if isinstance(image, str):
|
||||
image = load_image(image)
|
||||
|
||||
# 1.5~2.0ms
|
||||
yuv = cv2.cvtColor(image, cv2.COLOR_RGB2YUV)
|
||||
v = yuv[:, :, 2]
|
||||
h = yuv[:, :, 0]
|
||||
# 4.0~4.5ms
|
||||
if enemy:
|
||||
self.predict_enemy(h.copy(), v.copy())
|
||||
# 3.0~3.5ms
|
||||
if item:
|
||||
self.predict_item(v.copy())
|
||||
|
||||
if show_log:
|
||||
kv = {}
|
||||
if self.aimed_enemy:
|
||||
kv['enemy'] = self.aimed_enemy
|
||||
if self.aimed_item:
|
||||
kv['item'] = self.aimed_item
|
||||
if kv:
|
||||
logger.info(f'Aimed: {dict_to_kv(kv)}')
|
||||
if debug:
|
||||
self.show_aim()
|
||||
|
||||
def show_aim(self):
|
||||
if self.draw_enemy is None:
|
||||
if self.draw_item is None:
|
||||
return
|
||||
else:
|
||||
r = g = b = self.draw_item
|
||||
else:
|
||||
if self.draw_item is None:
|
||||
r = g = b = self.draw_enemy
|
||||
else:
|
||||
r = self.draw_enemy
|
||||
g = b = self.draw_item
|
||||
|
||||
image = cv2.merge([b, g, r])
|
||||
|
||||
cv2.imshow('AimDetector', image)
|
||||
cv2.waitKey(1)
|
||||
|
||||
@cached_property
|
||||
def aimed_enemy(self) -> tuple[int, int] | None:
|
||||
if self.points_enemy is None:
|
||||
return None
|
||||
try:
|
||||
_ = self.points_enemy[1]
|
||||
logger.warning(f'Multiple aimed enemy found, using first point of {self.points_enemy}')
|
||||
except IndexError:
|
||||
pass
|
||||
try:
|
||||
point = self.points_enemy[0]
|
||||
return tuple(point)
|
||||
except IndexError:
|
||||
return None
|
||||
|
||||
@cached_property
|
||||
def aimed_item(self) -> tuple[int, int] | None:
|
||||
if self.points_item is None:
|
||||
return None
|
||||
try:
|
||||
_ = self.points_item[1]
|
||||
logger.warning(f'Multiple aimed item found, using first point of {self.points_item}')
|
||||
except IndexError:
|
||||
pass
|
||||
try:
|
||||
point = self.points_item[0]
|
||||
return tuple(point)
|
||||
except IndexError:
|
||||
return None
|
||||
|
||||
|
||||
class AimDetectorMixin(UI):
|
||||
@cached_property
|
||||
def aim(self):
|
||||
return Aim()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
"""
|
||||
Test
|
||||
"""
|
||||
self = AimDetectorMixin('src')
|
||||
self.device.disable_stuck_detection()
|
||||
|
||||
while 1:
|
||||
self.device.screenshot()
|
||||
self.aim.predict(self.device.image, debug=True)
|
Loading…
Reference in New Issue
Block a user