import time import cv2 import numpy as np from PIL import Image from cnocr import CnOcr from module.base.button import Button from module.base.utils import extract_letters from module.logger import logger OCR_MODELS = { # Font: Impact, AgencyFB # Charset: 0123456789 'digit': CnOcr(root='./cnocr_models/digit', model_epoch=60), # Font: Impact # Charset: 0123456789ABCDEFSP-:/ 'stage': CnOcr(root='./cnocr_models/stage', model_epoch=56), } image_shape = (280, 32) width_range = (0.6, 1.4) text_length = (1, 6) text_interval = (0, 10) y_range = (-2, 2) class Ocr: def __init__(self, buttons, lang, letter=(255, 255, 255), back=(0, 0, 0), mid_process_height=70, threshold=127, additional_preprocess=None, length=None, white_list=None, name='OCR'): """ Args: lang (str): OCR model. in ['digit', 'cnocr']. letter (tuple(int)): Letter RGB. back (tuple(int)): Background RGB. mid_process_height (int): 70 additional_preprocess (callable): length (int, tuple(int)): Expected length. white_list (str): Expected str. buttons (Button, List[Button]): Button or list of Button instance. """ self.lang = lang self.cnocr = OCR_MODELS[lang] self.letter = letter self.back = back self.mid_process_height = mid_process_height self.threshold = threshold self.additional_preprocess = additional_preprocess self.length = (length, length) if isinstance(length, int) else length self.white_list = white_list self.buttons = buttons if isinstance(buttons, list) else [buttons] self.name = str(buttons) if isinstance(buttons, Button) else name def additional_preprocess_example(self, image): """ Args: image (np.ndarray): data range: [0, 255], dtype: float. shape: [?, 70] Returns: np.ndarray: data range: [0, 255], dtype: float. """ pass def pre_process(self, image): """ Args: image: A cropped screenshot. Returns: np.ndarray: shape: [70, 280]. data range: [0, 1] """ # Resize to height=70. size = (int(image.size[0] / image.size[1] * self.mid_process_height), self.mid_process_height) image = image.resize(size, Image.BILINEAR) # Set letter color to black, set background color to white. image = extract_letters(image, letter=self.letter, back=self.back) # Additional preprocess. if self.additional_preprocess is not None: image = self.additional_preprocess(image) # Binarization. _, image = cv2.threshold(image, self.threshold, 255, cv2.THRESH_BINARY) # Resize to input size. size = (int(image.shape[1] / image.shape[0] * image_shape[1]), image_shape[1]) image = cv2.resize(image, size, interpolation=cv2.INTER_LINEAR) diff_x = image_shape[0] - image.shape[1] if diff_x > 0: image = np.pad(image, ((0, 0), (0, diff_x)), mode='constant', constant_values=255) else: image = image[:, :image_shape[0]] # Image.fromarray(image.astype('uint8')).show() return image / 255.0 def after_process(self, result): """ Args: result (list[str]): ['第', '二', '行'] Returns: str: """ result = ''.join(result) if self.length is not None: if len(result) > self.length[1] or len(result) < self.length[0]: logger.warning(f'OCR result length unexpected. Expect: {self.length}. Result: {len(result)}') if self.white_list: for letter in result: if letter not in self.white_list: logger.warning(f'OCR letter unexpected. Letter: {letter}. White_list: {self.white_list}') return result def ocr(self, image): start_time = time.time() image_list = [self.pre_process(image.crop(button.area)) for button in self.buttons] result_list = self.cnocr.ocr_for_single_lines(image_list) result_list = [self.after_process(result) for result in result_list] if len(self.buttons) == 1: result_list = result_list[0] logger.attr(name='%s %ss' % (self.name, str(round(time.time() - start_time, 3)).ljust(5, '0')), text=str(result_list)) return result_list class Digit(Ocr): def __init__(self, buttons, letter=(255, 255, 255), back=(0, 0, 0), mid_process_height=70, threshold=127, additional_preprocess=None, length=None, white_list=None, limit=None, name='OCR'): super().__init__(buttons=buttons, lang='digit', letter=letter, back=back, mid_process_height=mid_process_height, threshold=threshold, additional_preprocess=additional_preprocess, length=length, white_list=white_list, name=name) self.limit = (0, limit) if isinstance(limit, int) else limit def after_process(self, raw): """ Returns: int: """ raw = super().after_process(raw) if not raw: result = 0 else: result = int(raw) if self.limit: if result < self.limit[0]: logger.info(f'OCR result smaller than expected. Expect: {self.limit}. Raw: {raw}. Treat as: {result}') result = self.limit[0] if result > self.limit[1]: logger.info(f'OCR result bigger than expected. Expect: {self.limit}. Raw: {raw}. Treat as: {result}') result = self.limit[1] return result