import numpy as np from PIL import ImageStat def random_normal_distribution_int(a, b, n=5): """Generate a normal distribution int within the interval. Use the average value of several random numbers to simulate normal distribution. Args: a (int): The minimum of the interval. b (int): The maximum of the interval. n (int): The amount of numbers in simulation. Default to 5. Returns: int """ if a < b: output = np.mean(np.random.randint(a, b, size=n)) return int(output.round()) else: return b def ensure_time(second, n=5, precision=3): """Ensure to be time. Args: second (int, float, tuple): time. n (int): The amount of numbers in simulation. Default to 5. precision (int): Decimals. Returns: """ if isinstance(second, tuple): multiply = 10 ** precision return random_normal_distribution_int(second[0] * multiply, second[1] * multiply, n) / multiply else: return second def random_rectangle_point(area): """Choose a random point in an area. Args: area (tuple): (upper_left_x, upper_left_y, bottom_right_x, bottom_right_y). Returns: int: x int: y """ x = random_normal_distribution_int(area[0], area[2]) y = random_normal_distribution_int(area[1], area[3]) return x, y def area_offset(area, offset): """ Args: area(tuple): (upper_left_x, upper_left_y, bottom_right_x, bottom_right_y). offset(tuple): (x, y). Returns: tuple: (upper_left_x, upper_left_y, bottom_right_x, bottom_right_y). """ return tuple(np.array(area) + np.append(offset, offset)) def area_pad(area, pad=10): """ Args: area(tuple): (upper_left_x, upper_left_y, bottom_right_x, bottom_right_y). pad(int): Returns: tuple: (upper_left_x, upper_left_y, bottom_right_x, bottom_right_y). """ return tuple(np.array(area) + np.array([pad, pad, -pad, -pad])) def point_in_area(point, area, threshold=5): """ Args: point: (x, y). area: (upper_left_x, upper_left_y, bottom_right_x, bottom_right_y). threshold: int Returns: bool """ return area[0] - threshold < point[0] < area[2] + threshold and area[1] - threshold < point[1] < area[3] + threshold def area_in_area(area1, area2, threshold=5): """ Args: area1: (upper_left_x, upper_left_y, bottom_right_x, bottom_right_y). area2: (upper_left_x, upper_left_y, bottom_right_x, bottom_right_y). threshold: int Returns: bool """ return area2[0] - threshold <= area1[0] \ and area2[1] - threshold <= area1[1] \ and area1[2] <= area2[2] + threshold \ and area1[3] <= area2[3] + threshold def area_cross_area(area1, area2, threshold=5): """ Args: area1: (upper_left_x, upper_left_y, bottom_right_x, bottom_right_y). area2: (upper_left_x, upper_left_y, bottom_right_x, bottom_right_y). threshold: int Returns: bool """ return point_in_area((area1[0], area1[1]), area2, threshold=threshold) \ or point_in_area((area1[2], area1[1]), area2, threshold=threshold) \ or point_in_area((area1[0], area1[3]), area2, threshold=threshold) \ or point_in_area((area1[2], area1[3]), area2, threshold=threshold) def node2location(node): """ Args: node(str): Example: 'E3' Returns: tuple: Example: (6, 4) """ return ord(node[0]) % 32 - 1, int(node[1]) - 1 def location2node(location): """ Args: location(tuple): Example: (6, 4) Returns: str: Example: 'E3' """ return chr(location[0] + 64 + 1) + str(location[1] + 1) def get_color(image, area): """Calculate the average color of a particular area of the image. Args: image (PIL.Image.Image): Screenshot. area (tuple): (upper_left_x, upper_left_y, bottom_right_x, bottom_right_y) Returns: tuple: (r, g, b) """ temp = image.crop(area) stat = ImageStat.Stat(temp) return np.array(stat.mean) def color_similarity(color1, color2): """ Args: color1 (tuple): (r, g, b) color2 (tuple): (r, g, b) Returns: int: """ diff = np.array(color1) - np.array(color2) positive, negative = diff, np.abs(diff) positive[diff < 0] = 0 negative[diff > 0] = 0 diff = np.max(positive) + np.max(negative) return diff def color_similar(color1, color2, threshold=10): """Consider two colors are similar, if tolerance lesser or equal threshold. Tolerance = Max(Positive(difference_rgb)) + Max(- Negative(difference_rgb)) The same as the tolerance in Photoshop. Args: color1 (tuple): (r, g, b) color2 (tuple): (r, g, b) threshold (int): Default to 10. Returns: bool: True if two colors are similar. """ # print(color1, color2) diff = np.array(color1) - np.array(color2) positive, negative = diff, np.abs(diff) positive[diff < 0] = 0 negative[diff > 0] = 0 diff = np.max(positive) + np.max(negative) return diff <= threshold def color_similar_1d(bar, color, threshold=10): """ Args: bar: 1D array. color: (r, g, b) threshold(int): Default to 10. Returns: np.ndarray: bool """ diff = np.array(bar) - np.array(color) positive, negative = diff, np.abs(diff) positive[diff < 0] = 0 negative[diff > 0] = 0 diff = np.max(positive, axis=1) + np.max(negative, axis=1) return diff <= threshold def color_similarity_2d(image, color): """ Args: image: 2D array. color: (r, g, b) Returns: np.ndarray: uint8 """ diff = np.array(image) - color positive, negative = diff, np.abs(diff) positive[diff < 0] = 0 negative[diff > 0] = 0 diff = 255.0 - np.max(positive, axis=2) - np.max(negative, axis=2) diff[diff < 0] = 0 image = diff.astype(np.uint8) return image def extract_letters(image, letter=(255, 255, 255), back=(0, 0, 0)): """Set letter color to black, set background color to white. Args: image: Shape (height, width, channel) letter (tuple): Letter RGB. back (tuple): Background RGB. Returns: np.ndarray: Shape (height, width) """ image = color_similarity_2d(np.array(image), color=letter) back = color_similarity(back, letter) image = (255.0 - image) * (1 + back / 255) image[image > 255] = 255 return image def red_overlay_transparency(color1, color2, red=247): """Calculate the transparency of red overlay. Args: color1: origin color. color2: changed color. red(int): red color 0-255. Default to 247. Returns: float: 0-1 """ return (color2[0] - color1[0]) / (red - color1[0]) def color_bar_percentage(image, area, prev_color, reverse=False, starter=0, threshold=30): """ Args: image: area: reverse: True if bar goes from right to left. starter: prev_color: Returns: float: 0 to 1. """ bar = np.array(image.crop(area)) length = bar.shape[1] bar = np.swapaxes(bar, 0, 1) bar = bar[::-1, :, :] if reverse else bar prev_index = 0 for index, color in enumerate(bar): if index < starter: continue mask = color_similar_1d(color, prev_color, threshold=threshold) if np.any(mask): prev_color = color[mask].mean(axis=0) prev_index = index return prev_index / length