import re import cv2 import numpy as np from PIL import Image REGEX_NODE = re.compile(r'(-?[A-Za-z]+)(-?\d+)') def random_normal_distribution_int(a, b, n=3): """Generate a normal distribution int within the interval. Use the average value of several random numbers to simulate normal distribution. Args: a (int): The minimum of the interval. b (int): The maximum of the interval. n (int): The amount of numbers in simulation. Default to 3. Returns: int """ if a < b: output = np.mean(np.random.randint(a, b, size=n)) return int(output.round()) else: return b def random_rectangle_point(area, n=3): """Choose a random point in an area. Args: area: (upper_left_x, upper_left_y, bottom_right_x, bottom_right_y). n (int): The amount of numbers in simulation. Default to 3. Returns: tuple(int): (x, y) """ x = random_normal_distribution_int(area[0], area[2], n=n) y = random_normal_distribution_int(area[1], area[3], n=n) return x, y def random_rectangle_vector(vector, box, random_range=(0, 0, 0, 0), padding=15): """Place a vector in a box randomly. Args: vector: (x, y) box: (upper_left_x, upper_left_y, bottom_right_x, bottom_right_y). random_range (tuple): Add a random_range to vector. (x_min, y_min, x_max, y_max). padding (int): Returns: tuple(int), tuple(int): start_point, end_point. """ vector = np.array(vector) + random_rectangle_point(random_range) vector = np.round(vector).astype(np.int) half_vector = np.round(vector / 2).astype(np.int) box = np.array(box) + np.append(np.abs(half_vector) + padding, -np.abs(half_vector) - padding) center = random_rectangle_point(box) start_point = center - half_vector end_point = start_point + vector return tuple(start_point), tuple(end_point) def random_rectangle_vector_opted( vector, box, random_range=(0, 0, 0, 0), padding=15, whitelist_area=None, blacklist_area=None): """ Place a vector in a box randomly. When emulator/game stuck, it treats a swipe as a click, clicking at the end of swipe path. To prevent this, random results need to be filtered. Args: vector: (x, y) box: (upper_left_x, upper_left_y, bottom_right_x, bottom_right_y). random_range (tuple): Add a random_range to vector. (x_min, y_min, x_max, y_max). padding (int): whitelist_area: (list[tuple[int]]): A list of area that safe to click. Swipe path will end there. blacklist_area: (list[tuple[int]]): If none of the whitelist_area satisfies current vector, blacklist_area will be used. Delete random path that ends in any blacklist_area. Returns: tuple(int), tuple(int): start_point, end_point. """ vector = np.array(vector) + random_rectangle_point(random_range) vector = np.round(vector).astype(np.int) half_vector = np.round(vector / 2).astype(np.int) box_pad = np.array(box) + np.append(np.abs(half_vector) + padding, -np.abs(half_vector) - padding) box_pad = area_offset(box_pad, half_vector) segment = int(np.linalg.norm(vector) // 70) + 1 def in_blacklist(end): if not blacklist_area: return False for x in range(segment + 1): point = - vector * x / segment + end for area in blacklist_area: if point_in_area(point, area, threshold=0): return True return False if whitelist_area: for area in whitelist_area: area = area_limit(area, box_pad) if all([x > 0 for x in area_size(area)]): end_point = random_rectangle_point(area) for _ in range(10): if in_blacklist(end_point): continue return point_limit(end_point - vector, box), point_limit(end_point, box) for _ in range(100): end_point = random_rectangle_point(box_pad) if in_blacklist(end_point): continue return point_limit(end_point - vector, box), point_limit(end_point, box) end_point = random_rectangle_point(box_pad) return point_limit(end_point - vector, box), point_limit(end_point, box) def random_line_segments(p1, p2, n, random_range=(0, 0, 0, 0)): """Cut a line into multiple segments. Args: p1: (x, y). p2: (x, y). n: Number of slice. random_range: Add a random_range to points. Returns: list[tuple]: [(x0, y0), (x1, y1), (x2, y2)] """ return [tuple((((n - index) * p1 + index * p2) / n).astype(int) + random_rectangle_point(random_range)) for index in range(0, n + 1)] def ensure_time(second, n=3, precision=3): """Ensure to be time. Args: second (int, float, tuple): time, such as 10, (10, 30), '10, 30' n (int): The amount of numbers in simulation. Default to 5. precision (int): Decimals. Returns: float: """ if isinstance(second, tuple): multiply = 10 ** precision result = random_normal_distribution_int(second[0] * multiply, second[1] * multiply, n) / multiply return round(result, precision) elif isinstance(second, str): if ',' in second: lower, upper = second.replace(' ', '').split(',') lower, upper = int(lower), int(upper) return ensure_time((lower, upper), n=n, precision=precision) if '-' in second: lower, upper = second.replace(' ', '').split('-') lower, upper = int(lower), int(upper) return ensure_time((lower, upper), n=n, precision=precision) else: return int(second) else: return second def ensure_int(*args): """ Convert all elements to int. Return the same structure as nested objects. Args: *args: Returns: list: """ def to_int(item): try: return int(item) except TypeError: result = [to_int(i) for i in item] if len(result) == 1: result = result[0] return result return to_int(args) def area_offset(area, offset): """ Args: area: (upper_left_x, upper_left_y, bottom_right_x, bottom_right_y). offset: (x, y). Returns: tuple: (upper_left_x, upper_left_y, bottom_right_x, bottom_right_y). """ return tuple(np.array(area) + np.append(offset, offset)) def area_pad(area, pad=10): """ Args: area: (upper_left_x, upper_left_y, bottom_right_x, bottom_right_y). pad (int): Returns: tuple: (upper_left_x, upper_left_y, bottom_right_x, bottom_right_y). """ return tuple(np.array(area) + np.array([pad, pad, -pad, -pad])) def limit_in(x, lower, upper): """ Limit x within range (lower, upper) Args: x: lower: upper: Returns: int, float: """ return max(min(x, upper), lower) def area_limit(area1, area2): """ Limit an area in another area. Args: area1: (upper_left_x, upper_left_y, bottom_right_x, bottom_right_y). area2: (upper_left_x, upper_left_y, bottom_right_x, bottom_right_y). Returns: tuple: (upper_left_x, upper_left_y, bottom_right_x, bottom_right_y). """ x_lower, y_lower, x_upper, y_upper = area2 return ( limit_in(area1[0], x_lower, x_upper), limit_in(area1[1], y_lower, y_upper), limit_in(area1[2], x_lower, x_upper), limit_in(area1[3], y_lower, y_upper), ) def area_size(area): """ Area size or shape. Args: area: (upper_left_x, upper_left_y, bottom_right_x, bottom_right_y). Returns: tuple: (x, y). """ return ( max(area[2] - area[0], 0), max(area[3] - area[1], 0) ) def point_limit(point, area): """ Limit point in an area. Args: point: (x, y). area: (upper_left_x, upper_left_y, bottom_right_x, bottom_right_y). Returns: tuple: (x, y). """ return ( limit_in(point[0], area[0], area[2]), limit_in(point[1], area[1], area[3]) ) def point_in_area(point, area, threshold=5): """ Args: point: (x, y). area: (upper_left_x, upper_left_y, bottom_right_x, bottom_right_y). threshold: int Returns: bool: """ return area[0] - threshold < point[0] < area[2] + threshold and area[1] - threshold < point[1] < area[3] + threshold def area_in_area(area1, area2, threshold=5): """ Args: area1: (upper_left_x, upper_left_y, bottom_right_x, bottom_right_y). area2: (upper_left_x, upper_left_y, bottom_right_x, bottom_right_y). threshold: int Returns: bool: """ return area2[0] - threshold <= area1[0] \ and area2[1] - threshold <= area1[1] \ and area1[2] <= area2[2] + threshold \ and area1[3] <= area2[3] + threshold def area_cross_area(area1, area2, threshold=5): """ Args: area1: (upper_left_x, upper_left_y, bottom_right_x, bottom_right_y). area2: (upper_left_x, upper_left_y, bottom_right_x, bottom_right_y). threshold: int Returns: bool: """ # https://www.yiiven.cn/rect-is-intersection.html xa1, ya1, xa2, ya2 = area1 xb1, yb1, xb2, yb2 = area2 return abs(xb2 + xb1 - xa2 - xa1) <= xa2 - xa1 + xb2 - xb1 + threshold * 2 \ and abs(yb2 + yb1 - ya2 - ya1) <= ya2 - ya1 + yb2 - yb1 + threshold * 2 def float2str(n, decimal=3): """ Args: n (float): decimal (int): Returns: str: """ return str(round(n, decimal)).ljust(decimal + 2, "0") def point2str(x, y, length=4): """ Args: x (int, float): y (int, float): length (int): Align length. Returns: str: String with numbers right aligned, such as '( 100, 80)'. """ return '(%s, %s)' % (str(int(x)).rjust(length), str(int(y)).rjust(length)) def col2name(col): """ Convert a zero indexed column cell reference to a string. Args: col: The cell column. Int. Returns: Column style string. Examples: 0 -> A, 3 -> D, 35 -> AJ, -1 -> -A """ col_neg = col < 0 if col_neg: col_num = -col else: col_num = col + 1 # Change to 1-index. col_str = '' while col_num: # Set remainder from 1 .. 26 remainder = col_num % 26 if remainder == 0: remainder = 26 # Convert the remainder to a character. col_letter = chr(remainder + 64) # Accumulate the column letters, right to left. col_str = col_letter + col_str # Get the next order of magnitude. col_num = int((col_num - 1) / 26) if col_neg: return '-' + col_str else: return col_str def name2col(col_str): """ Convert a cell reference in A1 notation to a zero indexed row and column. Args: col_str: A1 style string. Returns: row, col: Zero indexed cell row and column indices. """ # Convert base26 column string to number. expn = 0 col = 0 col_neg = col_str.startswith('-') col_str = col_str.strip('-').upper() for char in reversed(col_str): col += (ord(char) - 64) * (26 ** expn) expn += 1 if col_neg: return -col else: return col - 1 # Convert 1-index to zero-index def node2location(node): """ See location2node() Args: node (str): Example: 'E3' Returns: tuple[int]: Example: (4, 2) """ res = REGEX_NODE.search(node) if res: x, y = res.group(1), res.group(2) y = int(y) if y > 0: y -= 1 return name2col(x), y else: # Whatever return ord(node[0]) % 32 - 1, int(node[1:]) - 1 def location2node(location): """ Convert location tuple to an Excel-like cell. Accept negative values also. -2 -1 0 1 2 3 -2 -B-2 -A-2 A-2 B-2 C-2 D-2 -1 -B-1 -A-1 A-1 B-1 C-1 D-1 0 -B1 -A1 A1 B1 C1 D1 1 -B2 -A2 A2 B2 C2 D2 2 -B3 -A3 A3 B3 C3 D3 3 -B4 -A4 A4 B4 C4 D4 # To generate the table above index = range(-2, 4) row = ' ' + ' '.join([str(i).rjust(4) for i in index]) print(row) for y in index: row = str(y).rjust(2) + ' ' + ' '.join([location2node((x, y)).rjust(4) for x in index]) print(row) def check(node): return point2str(*node2location(location2node(node)), length=2) row = ' ' + ' '.join([str(i).rjust(8) for i in index]) print(row) for y in index: row = str(y).rjust(2) + ' ' + ' '.join([check((x, y)).rjust(4) for x in index]) print(row) Args: location (tuple[int]): Returns: str: """ x, y = location if y >= 0: y += 1 return col2name(x) + str(y) def load_image(file, area=None): """ Load an image like pillow and drop alpha channel. Args: file (str): area (tuple): Returns: np.ndarray: """ image = Image.open(file) if area is not None: image = image.crop(area) image = np.array(image) channel = image.shape[2] if len(image.shape) > 2 else 1 if channel > 3: image = image[:, :, :3].copy() return image def save_image(image, file): """ Save an image like pillow. Args: image (np.ndarray): file (str): """ # image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) # cv2.imwrite(file, image) Image.fromarray(image).save(file) def crop(image, area): """ Crop image like pillow, when using opencv / numpy. Provides a black background if cropping outside of image. Args: image (np.ndarray): area: Returns: np.ndarray: """ x1, y1, x2, y2 = map(int, map(round, area)) h, w = image.shape[:2] border = np.maximum((0 - y1, y2 - h, 0 - x1, x2 - w), 0) x1, y1, x2, y2 = np.maximum((x1, y1, x2, y2), 0) image = image[y1:y2, x1:x2].copy() if sum(border) > 0: image = cv2.copyMakeBorder(image, *border, borderType=cv2.BORDER_CONSTANT, value=(0, 0, 0)) return image def resize(image, size): """ Resize image like pillow image.resize(), but implement in opencv. Pillow uses PIL.Image.NEAREST by default. Args: image (np.ndarray): size: (x, y) Returns: np.ndarray: """ return cv2.resize(image, size, interpolation=cv2.INTER_NEAREST) def image_channel(image): """ Args: image (np.ndarray): Returns: int: 0 for grayscale, 3 for RGB. """ return image.shape[2] if len(image.shape) == 3 else 0 def image_size(image): """ Args: image (np.ndarray): Returns: int, int: width, height """ shape = image.shape return shape[1], shape[0] def rgb2gray(image): """ Args: image (np.ndarray): Shape (height, width, channel) Returns: np.ndarray: Shape (height, width) """ r, g, b = cv2.split(image) return cv2.add( cv2.multiply(cv2.max(cv2.max(r, g), b), 0.5), cv2.multiply(cv2.min(cv2.min(r, g), b), 0.5) ) def rgb2hsv(image): """ Convert RGB color space to HSV color space. HSV is Hue Saturation Value. Args: image (np.ndarray): Shape (height, width, channel) Returns: np.ndarray: Hue (0~360), Saturation (0~100), Value (0~100). """ image = cv2.cvtColor(image, cv2.COLOR_RGB2HSV).astype(np.float) image *= (360 / 180, 100 / 255, 100 / 255) return image def rgb2yuv(image): """ Convert RGB to YUV color space. Args: image (np.ndarray): Shape (height, width, channel) Returns: np.ndarray: Shape (height, width) """ image = cv2.cvtColor(image, cv2.COLOR_RGB2YUV) return image def rgb2luma(image): """ Convert RGB to the Y channel (Luminance) in YUV color space. Args: image (np.ndarray): Shape (height, width, channel) Returns: np.ndarray: Shape (height, width) """ image = cv2.cvtColor(image, cv2.COLOR_RGB2YUV) luma, _, _ = cv2.split(image) return luma def get_color(image, area): """Calculate the average color of a particular area of the image. Args: image (np.ndarray): Screenshot. area (tuple): (upper_left_x, upper_left_y, bottom_right_x, bottom_right_y) Returns: tuple: (r, g, b) """ temp = crop(image, area) color = cv2.mean(temp) return color[:3] def get_bbox(image, threshold=0): """ A numpy implementation of the getbbox() in pillow. Args: image (np.ndarray): Screenshot. threshold (int): Color <= threshold will be considered black Returns: tuple: (upper_left_x, upper_left_y, bottom_right_x, bottom_right_y) """ if image_channel(image) == 3: image = np.max(image, axis=2) x = np.where(np.max(image, axis=0) > threshold)[0] y = np.where(np.max(image, axis=1) > threshold)[0] return x[0], y[0], x[-1] + 1, y[-1] + 1 def color_similarity(color1, color2): """ Args: color1 (tuple): (r, g, b) color2 (tuple): (r, g, b) Returns: int: """ diff = np.array(color1).astype(int) - np.array(color2).astype(int) diff = np.max(np.maximum(diff, 0)) - np.min(np.minimum(diff, 0)) return diff def color_similar(color1, color2, threshold=10): """Consider two colors are similar, if tolerance lesser or equal threshold. Tolerance = Max(Positive(difference_rgb)) + Max(- Negative(difference_rgb)) The same as the tolerance in Photoshop. Args: color1 (tuple): (r, g, b) color2 (tuple): (r, g, b) threshold (int): Default to 10. Returns: bool: True if two colors are similar. """ # print(color1, color2) diff = np.array(color1).astype(int) - np.array(color2).astype(int) diff = np.max(np.maximum(diff, 0)) - np.min(np.minimum(diff, 0)) return diff <= threshold def color_similar_1d(image, color, threshold=10): """ Args: image (np.ndarray): 1D array. color: (r, g, b) threshold(int): Default to 10. Returns: np.ndarray: bool """ diff = image.astype(int) - color diff = np.max(np.maximum(diff, 0), axis=1) - np.min(np.minimum(diff, 0), axis=1) return diff <= threshold def color_similarity_2d(image, color): """ Args: image: 2D array. color: (r, g, b) Returns: np.ndarray: uint8 """ r, g, b = cv2.split(cv2.subtract(image, (*color, 0))) positive = cv2.max(cv2.max(r, g), b) r, g, b = cv2.split(cv2.subtract((*color, 0), image)) negative = cv2.max(cv2.max(r, g), b) return cv2.subtract(255, cv2.add(positive, negative)) def extract_letters(image, letter=(255, 255, 255), threshold=128): """Set letter color to black, set background color to white. Args: image: Shape (height, width, channel) letter (tuple): Letter RGB. threshold (int): Returns: np.ndarray: Shape (height, width) """ r, g, b = cv2.split(cv2.subtract(image, (*letter, 0))) positive = cv2.max(cv2.max(r, g), b) r, g, b = cv2.split(cv2.subtract((*letter, 0), image)) negative = cv2.max(cv2.max(r, g), b) return cv2.multiply(cv2.add(positive, negative), 255.0 / threshold) def extract_white_letters(image, threshold=128): """Set letter color to black, set background color to white. This function will discourage color pixels (Non-gray pixels) Args: image: Shape (height, width, channel) threshold (int): Returns: np.ndarray: Shape (height, width) """ r, g, b = cv2.split(cv2.subtract((255, 255, 255, 0), image)) minimum = cv2.min(cv2.min(r, g), b) maximum = cv2.max(cv2.max(r, g), b) return cv2.multiply(cv2.add(maximum, cv2.subtract(maximum, minimum)), 255.0 / threshold) def color_mapping(image, max_multiply=2): """ Mapping color to 0-255. Minimum color to 0, maximum color to 255, multiply colors by 2 at max. Args: image (np.ndarray): max_multiply (int, float): Returns: np.ndarray: """ image = image.astype(float) low, high = np.min(image), np.max(image) multiply = min(255 / (high - low), max_multiply) add = (255 - multiply * (low + high)) / 2 image = cv2.add(cv2.multiply(image, multiply), add) image[image > 255] = 255 image[image < 0] = 0 return image.astype(np.uint8) def image_left_strip(image, threshold, length): """ In `DAILY:200/200` strip `DAILY:` and leave `200/200` Args: image (np.ndarray): (height, width) threshold (int): 0-255 The first column with brightness lower than this will be considered as left edge. length (int): Strip this length of image after the left edge Returns: np.ndarray: """ brightness = np.mean(image, axis=0) match = np.where(brightness < threshold)[0] if len(match): left = match[0] + length total = image.shape[1] if left < total: image = image[:, left:] return image def red_overlay_transparency(color1, color2, red=247): """Calculate the transparency of red overlay. Args: color1: origin color. color2: changed color. red(int): red color 0-255. Default to 247. Returns: float: 0-1 """ return (color2[0] - color1[0]) / (red - color1[0]) def color_bar_percentage(image, area, prev_color, reverse=False, starter=0, threshold=30): """ Args: image: area: prev_color: reverse: True if bar goes from right to left. starter: threshold: Returns: float: 0 to 1. """ image = crop(image, area) image = image[:, ::-1, :] if reverse else image length = image.shape[1] prev_index = starter for _ in range(1280): bar = color_similarity_2d(image, color=prev_color) index = np.where(np.any(bar > 255 - threshold, axis=0))[0] if not index.size: return prev_index / length else: index = index[-1] if index <= prev_index: return index / length prev_index = index prev_row = bar[:, prev_index] > 255 - threshold if not prev_row.size: return prev_index / length prev_color = np.mean(image[:, prev_index], axis=0) return 0.