mirror of
https://github.com/LmeSzinc/StarRailCopilot.git
synced 2024-11-26 18:20:42 +00:00
87 lines
3.2 KiB
Python
87 lines
3.2 KiB
Python
import numpy as np
|
|
|
|
from module.base.button import ButtonGrid
|
|
from module.base.ocr import Digit
|
|
from module.exercise.assets import *
|
|
from module.logger import logger
|
|
from module.ui.assets import BACK_ARROW
|
|
from module.ui.ui import UI
|
|
|
|
OPPONENT = ButtonGrid(origin=(104, 77), delta=(244, 0), button_shape=(212, 304), grid_shape=(4, 1))
|
|
|
|
|
|
class Opponent:
|
|
def __init__(self, main_image, fleet_image, index):
|
|
self.index = index
|
|
self.power = self.get_power(image=main_image)
|
|
self.level = self.get_level(image=fleet_image)
|
|
self.priority = self.get_priority()
|
|
|
|
# [OPPONENT_1] ( 8256) 120 120 120 | (12356) 100 80 80
|
|
level = [str(x).rjust(3, ' ') for x in self.level]
|
|
power = ['(' + str(x).rjust(5, ' ') + ')' for x in self.power]
|
|
logger.attr(
|
|
'OPPONENT_%s, %s' % (index, str(np.round(self.priority, 3)).ljust(5, '0')),
|
|
' '.join([power[0]] + level[:3] + ['|'] + [power[1]] + level[3:])
|
|
)
|
|
|
|
@staticmethod
|
|
def process(image):
|
|
# image[-6:, :] = 255
|
|
letter_l = np.where(np.mean(image, axis=0) < 85)[0]
|
|
if len(letter_l):
|
|
letter_l = letter_l[0] + 75
|
|
image = image[:, letter_l:]
|
|
|
|
image = np.pad(image, ((0, 0), (0, 5)), mode='constant', constant_values=255)
|
|
|
|
return image
|
|
|
|
def get_level(self, image):
|
|
level = []
|
|
level += ButtonGrid(origin=(130, 259), delta=(168, 0), button_shape=(57, 21), grid_shape=(3, 1), name='LEVEL').buttons()
|
|
level += ButtonGrid(origin=(832, 259), delta=(168, 0), button_shape=(57, 21), grid_shape=(3, 1), name='LEVEL').buttons()
|
|
|
|
level = Digit(level, letter=(255, 255, 255), back=(102, 102, 102), limit=120, threshold=127, additional_preprocess=self.process, name='LEVEL')
|
|
result = level.ocr(image)
|
|
return result
|
|
|
|
def get_power(self, image):
|
|
grids = ButtonGrid(origin=(222, 266), delta=(244, 30), button_shape=(72, 15), grid_shape=(4, 2), name='POWER')
|
|
power = [grids[self.index, 0], grids[self.index, 1]]
|
|
|
|
power = Digit(power, letter=(255, 223, 57), back=(74, 109, 156), threshold=221, limit=17000, name='POWER')
|
|
result = power.ocr(image)
|
|
return result
|
|
|
|
def get_priority(self):
|
|
# level = np.sum(self.level) / 6
|
|
# power = np.sum(self.power) / 6
|
|
# return level - (power - 1000) / 30
|
|
|
|
level = np.sum(self.level) / 6
|
|
return level
|
|
|
|
|
|
class OpponentChoose(UI):
|
|
main_image = None
|
|
opponents = []
|
|
|
|
def _opponent_fleet_check_all(self):
|
|
self.opponents = []
|
|
self.main_image = self.device.image
|
|
|
|
for index in range(4):
|
|
self.ui_click(click_button=OPPONENT[index, 0], check_button=EXERCISE_PREPARATION,
|
|
appear_button=NEW_OPPONENT, skip_first_screenshot=True)
|
|
|
|
self.opponents.append(Opponent(main_image=self.main_image, fleet_image=self.device.image, index=index))
|
|
|
|
self.ui_click(click_button=BACK_ARROW, check_button=NEW_OPPONENT,
|
|
appear_button=EXERCISE_PREPARATION, skip_first_screenshot=True)
|
|
|
|
def _opponent_sort(self):
|
|
priority = np.argsort([- x.priority for x in self.opponents])
|
|
logger.attr('Order', str(priority))
|
|
return priority
|