mirror of
https://github.com/LmeSzinc/StarRailCopilot.git
synced 2024-11-16 14:31:16 +00:00
310 lines
9.8 KiB
Python
310 lines
9.8 KiB
Python
import re
|
|
import time
|
|
from datetime import timedelta
|
|
|
|
import cv2
|
|
from pponnxcr.predict_system import BoxedResult
|
|
|
|
import module.config.server as server
|
|
from module.base.button import ButtonWrapper
|
|
from module.base.decorator import cached_property
|
|
from module.base.utils import area_pad, corner2area, crop, float2str
|
|
from module.exception import ScriptError
|
|
from module.logger import logger
|
|
from module.ocr.models import OCR_MODEL, TextSystem
|
|
from module.ocr.utils import merge_buttons
|
|
|
|
|
|
def enlarge_canvas(image):
|
|
"""
|
|
Enlarge image into a square fill with black background. In the structure of PaddleOCR,
|
|
image with w:h=1:1 is the best while 3:1 rectangles takes three times as long.
|
|
Also enlarge into the integer multiple of 32 cause PaddleOCR will downscale images to 1/32.
|
|
|
|
No longer needed, already included in pponnxcr.
|
|
"""
|
|
height, width = image.shape[:2]
|
|
length = int(max(width, height) // 32 * 32 + 32)
|
|
border = (0, length - height, 0, length - width)
|
|
if sum(border) > 0:
|
|
image = cv2.copyMakeBorder(image, *border, borderType=cv2.BORDER_CONSTANT, value=(0, 0, 0))
|
|
return image
|
|
|
|
|
|
class OcrResultButton:
|
|
def __init__(self, boxed_result: BoxedResult, keyword_classes: list):
|
|
"""
|
|
Args:
|
|
boxed_result: BoxedResult from ppocr-onnx
|
|
keyword_classes: List of Keyword classes
|
|
"""
|
|
self.area = boxed_result.box
|
|
self.search = area_pad(self.area, pad=-20)
|
|
# self.color =
|
|
self.button = boxed_result.box
|
|
|
|
try:
|
|
self.matched_keyword = self.match_keyword(boxed_result.ocr_text, keyword_classes)
|
|
self.name = str(self.matched_keyword)
|
|
except ScriptError:
|
|
self.matched_keyword = None
|
|
self.name = boxed_result.ocr_text
|
|
|
|
self.text = boxed_result.ocr_text
|
|
self.score = boxed_result.score
|
|
|
|
@staticmethod
|
|
def match_keyword(ocr_text, keyword_classes):
|
|
"""
|
|
Args:
|
|
ocr_text (str):
|
|
keyword_classes: List of Keyword classes
|
|
|
|
Returns:
|
|
Keyword:
|
|
|
|
Raises:
|
|
ScriptError: If no keywords matched
|
|
"""
|
|
for keyword_class in keyword_classes:
|
|
try:
|
|
matched = keyword_class.find(ocr_text, in_current_server=True, ignore_punctuation=True)
|
|
return matched
|
|
except ScriptError:
|
|
continue
|
|
|
|
raise ScriptError
|
|
|
|
def __str__(self):
|
|
return self.name
|
|
|
|
__repr__ = __str__
|
|
|
|
def __eq__(self, other):
|
|
return str(self) == str(other)
|
|
|
|
def __hash__(self):
|
|
return hash(self.name)
|
|
|
|
def __bool__(self):
|
|
return True
|
|
|
|
|
|
class Ocr:
|
|
# Merge results with box distance <= thres
|
|
merge_thres_x = 0
|
|
merge_thres_y = 0
|
|
|
|
def __init__(self, button: ButtonWrapper, lang=None, name=None):
|
|
"""
|
|
Args:
|
|
button:
|
|
lang: If None, use in-game language
|
|
name: If None, use button.name
|
|
"""
|
|
if lang is None:
|
|
lang = server.lang
|
|
if name is None:
|
|
name = button.name
|
|
|
|
self.button: ButtonWrapper = button
|
|
self.lang: str = lang
|
|
self.name: str = name
|
|
|
|
@cached_property
|
|
def model(self) -> TextSystem:
|
|
return OCR_MODEL.get_by_lang(self.lang)
|
|
|
|
def pre_process(self, image):
|
|
"""
|
|
Args:
|
|
image (np.ndarray): Shape (height, width, channel)
|
|
|
|
Returns:
|
|
np.ndarray: Shape (width, height)
|
|
"""
|
|
return image
|
|
|
|
def after_process(self, result):
|
|
"""
|
|
Args:
|
|
result (str): '第二行'
|
|
|
|
Returns:
|
|
str:
|
|
"""
|
|
if result.startswith('UID'):
|
|
result = 'UID'
|
|
return result
|
|
|
|
def format_result(self, result):
|
|
"""
|
|
Will be overriden.
|
|
"""
|
|
return result
|
|
|
|
def ocr_single_line(self, image):
|
|
# pre process
|
|
start_time = time.time()
|
|
image = crop(image, self.button.area)
|
|
image = self.pre_process(image)
|
|
# ocr
|
|
result, _ = self.model.ocr_single_line(image)
|
|
# after proces
|
|
result = self.after_process(result)
|
|
result = self.format_result(result)
|
|
logger.attr(name='%s %ss' % (self.name, float2str(time.time() - start_time)),
|
|
text=str(result))
|
|
return result
|
|
|
|
def ocr_multi_lines(self, image_list):
|
|
# pre process
|
|
start_time = time.time()
|
|
image_list = [self.pre_process(image) for image in image_list]
|
|
# ocr
|
|
result_list = self.model.ocr_lines(image_list)
|
|
result_list = [(result, score) for result, score in result_list]
|
|
# after process
|
|
result_list = [(self.after_process(result), score) for result, score in result_list]
|
|
result_list = [(self.format_result(result), score) for result, score in result_list]
|
|
logger.attr(name="%s %ss" % (self.name, float2str(time.time() - start_time)),
|
|
text=str([result for result, _ in result_list]))
|
|
return result_list
|
|
|
|
def detect_and_ocr(self, image, direct_ocr=False) -> list[BoxedResult]:
|
|
"""
|
|
Args:
|
|
image:
|
|
direct_ocr: True to ignore `button` attribute and feed the image to OCR model without cropping.
|
|
|
|
Returns:
|
|
|
|
"""
|
|
# pre process
|
|
start_time = time.time()
|
|
if not direct_ocr:
|
|
image = crop(image, self.button.area)
|
|
image = self.pre_process(image)
|
|
# ocr
|
|
# image = enlarge_canvas(image)
|
|
results: list[BoxedResult] = self.model.detect_and_ocr(image)
|
|
# after proces
|
|
for result in results:
|
|
if not direct_ocr:
|
|
result.box += self.button.area[:2]
|
|
result.box = tuple(corner2area(result.box))
|
|
results = merge_buttons(results, thres_x=self.merge_thres_x, thres_y=self.merge_thres_y)
|
|
for result in results:
|
|
result.ocr_text = self.after_process(result.ocr_text)
|
|
|
|
logger.attr(name='%s %ss' % (self.name, float2str(time.time() - start_time)),
|
|
text=str([result.ocr_text for result in results]))
|
|
return results
|
|
|
|
def matched_ocr(self, image, keyword_classes, direct_ocr=False) -> list[OcrResultButton]:
|
|
"""
|
|
Args:
|
|
image: Screenshot
|
|
keyword_classes: `Keyword` class or classes inherited `Keyword`, or a list of them.
|
|
direct_ocr: True to ignore `button` attribute and feed the image to OCR model without cropping.
|
|
|
|
Returns:
|
|
List of matched OcrResultButton.
|
|
OCR result which didn't matched known keywords will be dropped.
|
|
"""
|
|
if not isinstance(keyword_classes, list):
|
|
keyword_classes = [keyword_classes]
|
|
|
|
def is_valid(keyword):
|
|
# Digits will be considered as the index of keyword
|
|
if keyword.isdigit():
|
|
return False
|
|
return True
|
|
|
|
results = self.detect_and_ocr(image, direct_ocr=direct_ocr)
|
|
results = [
|
|
OcrResultButton(result, keyword_classes)
|
|
for result in results if is_valid(result.ocr_text)
|
|
]
|
|
results = [result for result in results if result.matched_keyword is not None]
|
|
logger.attr(name=f'{self.name} matched',
|
|
text=results)
|
|
return results
|
|
|
|
|
|
class Digit(Ocr):
|
|
def __init__(self, button: ButtonWrapper, lang='en', name=None):
|
|
super().__init__(button, lang=lang, name=name)
|
|
|
|
def format_result(self, result) -> int:
|
|
"""
|
|
Returns:
|
|
int:
|
|
"""
|
|
result = super().after_process(result)
|
|
logger.attr(name=self.name, text=str(result))
|
|
|
|
res = re.search(r'(\d+)', result)
|
|
if res:
|
|
return int(res.group(1))
|
|
else:
|
|
logger.warning(f'No digit found in {result}')
|
|
return 0
|
|
|
|
|
|
class DigitCounter(Ocr):
|
|
def __init__(self, button: ButtonWrapper, lang='en', name=None):
|
|
super().__init__(button, lang=lang, name=name)
|
|
|
|
def format_result(self, result) -> tuple[int, int, int]:
|
|
"""
|
|
Do OCR on a counter, such as `14/15`, and returns 14, 1, 15
|
|
|
|
Returns:
|
|
int:
|
|
"""
|
|
result = super().after_process(result)
|
|
logger.attr(name=self.name, text=str(result))
|
|
|
|
res = re.search(r'(\d+)/(\d+)', result)
|
|
if res:
|
|
groups = [int(s) for s in res.groups()]
|
|
current, total = int(groups[0]), int(groups[1])
|
|
# current = min(current, total)
|
|
return current, total - current, total
|
|
else:
|
|
logger.warning(f'No digit counter found in {result}')
|
|
return 0, 0, 0
|
|
|
|
|
|
class Duration(Ocr):
|
|
@cached_property
|
|
def timedelta_regex(self):
|
|
regex_str = {
|
|
'cn': r'\D*((?P<days>\d{1,2})天)?((?P<hours>\d{1,2})小时)?((?P<minutes>\d{1,2})分钟)?((?P<seconds>\d{1,2})秒)?',
|
|
'en': r'\D*((?P<days>\d{1,2})d\s*)?((?P<hours>\d{1,2})h\s*)?((?P<minutes>\d{1,2})m\s*)?((?P<seconds>\d{1,2})s)?'
|
|
}[self.lang]
|
|
return re.compile(regex_str)
|
|
|
|
def format_result(self, result: str) -> timedelta:
|
|
"""
|
|
Do OCR on a duration, such as `18d 2h 13m 30s`, `2h`, `13m 30s`, `9s`
|
|
|
|
Returns:
|
|
timedelta:
|
|
"""
|
|
matched = self.timedelta_regex.match(result)
|
|
if matched is None:
|
|
return timedelta()
|
|
days = self._sanitize_number(matched.group('days'))
|
|
hours = self._sanitize_number(matched.group('hours'))
|
|
minutes = self._sanitize_number(matched.group('minutes'))
|
|
seconds = self._sanitize_number(matched.group('seconds'))
|
|
return timedelta(days=days, hours=hours, minutes=minutes, seconds=seconds)
|
|
|
|
@staticmethod
|
|
def _sanitize_number(number) -> int:
|
|
if number is None:
|
|
return 0
|
|
return int(number)
|