StarRailCopilot/module/base/utils/utils.py
2023-10-23 02:24:46 +08:00

934 lines
24 KiB
Python

import re
import cv2
import numpy as np
from PIL import Image
REGEX_NODE = re.compile(r'(-?[A-Za-z]+)(-?\d+)')
def random_normal_distribution_int(a, b, n=3):
"""Generate a normal distribution int within the interval. Use the average value of several random numbers to
simulate normal distribution.
Args:
a (int): The minimum of the interval.
b (int): The maximum of the interval.
n (int): The amount of numbers in simulation. Default to 3.
Returns:
int
"""
if a < b:
output = np.mean(np.random.randint(a, b, size=n))
return int(output.round())
else:
return b
def random_rectangle_point(area, n=3):
"""Choose a random point in an area.
Args:
area: (upper_left_x, upper_left_y, bottom_right_x, bottom_right_y).
n (int): The amount of numbers in simulation. Default to 3.
Returns:
tuple(int): (x, y)
"""
x = random_normal_distribution_int(area[0], area[2], n=n)
y = random_normal_distribution_int(area[1], area[3], n=n)
return x, y
def random_rectangle_vector(vector, box, random_range=(0, 0, 0, 0), padding=15):
"""Place a vector in a box randomly.
Args:
vector: (x, y)
box: (upper_left_x, upper_left_y, bottom_right_x, bottom_right_y).
random_range (tuple): Add a random_range to vector. (x_min, y_min, x_max, y_max).
padding (int):
Returns:
tuple(int), tuple(int): start_point, end_point.
"""
vector = np.array(vector) + random_rectangle_point(random_range)
vector = np.round(vector).astype(int)
half_vector = np.round(vector / 2).astype(int)
box = np.array(box) + np.append(np.abs(half_vector) + padding, -np.abs(half_vector) - padding)
center = random_rectangle_point(box)
start_point = center - half_vector
end_point = start_point + vector
return tuple(start_point), tuple(end_point)
def random_rectangle_vector_opted(
vector, box, random_range=(0, 0, 0, 0), padding=15, whitelist_area=None, blacklist_area=None):
"""
Place a vector in a box randomly.
When emulator/game stuck, it treats a swipe as a click, clicking at the end of swipe path.
To prevent this, random results need to be filtered.
Args:
vector: (x, y)
box: (upper_left_x, upper_left_y, bottom_right_x, bottom_right_y).
random_range (tuple): Add a random_range to vector. (x_min, y_min, x_max, y_max).
padding (int):
whitelist_area: (list[tuple[int]]):
A list of area that safe to click. Swipe path will end there.
blacklist_area: (list[tuple[int]]):
If none of the whitelist_area satisfies current vector, blacklist_area will be used.
Delete random path that ends in any blacklist_area.
Returns:
tuple(int), tuple(int): start_point, end_point.
"""
vector = np.array(vector) + random_rectangle_point(random_range)
vector = np.round(vector).astype(int)
half_vector = np.round(vector / 2).astype(int)
box_pad = np.array(box) + np.append(np.abs(half_vector) + padding, -np.abs(half_vector) - padding)
box_pad = area_offset(box_pad, half_vector)
segment = int(np.linalg.norm(vector) // 70) + 1
def in_blacklist(end):
if not blacklist_area:
return False
for x in range(segment + 1):
point = - vector * x / segment + end
for area in blacklist_area:
if point_in_area(point, area, threshold=0):
return True
return False
if whitelist_area:
for area in whitelist_area:
area = area_limit(area, box_pad)
if all([x > 0 for x in area_size(area)]):
end_point = random_rectangle_point(area)
for _ in range(10):
if in_blacklist(end_point):
continue
return point_limit(end_point - vector, box), point_limit(end_point, box)
for _ in range(100):
end_point = random_rectangle_point(box_pad)
if in_blacklist(end_point):
continue
return point_limit(end_point - vector, box), point_limit(end_point, box)
end_point = random_rectangle_point(box_pad)
return point_limit(end_point - vector, box), point_limit(end_point, box)
def random_line_segments(p1, p2, n, random_range=(0, 0, 0, 0)):
"""Cut a line into multiple segments.
Args:
p1: (x, y).
p2: (x, y).
n: Number of slice.
random_range: Add a random_range to points.
Returns:
list[tuple]: [(x0, y0), (x1, y1), (x2, y2)]
"""
return [tuple((((n - index) * p1 + index * p2) / n).astype(int) + random_rectangle_point(random_range))
for index in range(0, n + 1)]
def ensure_time(second, n=3, precision=3):
"""Ensure to be time.
Args:
second (int, float, tuple): time, such as 10, (10, 30), '10, 30'
n (int): The amount of numbers in simulation. Default to 5.
precision (int): Decimals.
Returns:
float:
"""
if isinstance(second, tuple):
multiply = 10 ** precision
result = random_normal_distribution_int(second[0] * multiply, second[1] * multiply, n) / multiply
return round(result, precision)
elif isinstance(second, str):
if ',' in second:
lower, upper = second.replace(' ', '').split(',')
lower, upper = int(lower), int(upper)
return ensure_time((lower, upper), n=n, precision=precision)
if '-' in second:
lower, upper = second.replace(' ', '').split('-')
lower, upper = int(lower), int(upper)
return ensure_time((lower, upper), n=n, precision=precision)
else:
return int(second)
else:
return second
def ensure_int(*args):
"""
Convert all elements to int.
Return the same structure as nested objects.
Args:
*args:
Returns:
list:
"""
def to_int(item):
try:
return int(item)
except TypeError:
result = [to_int(i) for i in item]
if len(result) == 1:
result = result[0]
return result
return to_int(args)
def area_offset(area, offset):
"""
Move an area.
Args:
area: (upper_left_x, upper_left_y, bottom_right_x, bottom_right_y).
offset: (x, y).
Returns:
tuple: (upper_left_x, upper_left_y, bottom_right_x, bottom_right_y).
"""
upper_left_x, upper_left_y, bottom_right_x, bottom_right_y = area
x, y = offset
return upper_left_x + x, upper_left_y + y, bottom_right_x + x, bottom_right_y + y
def area_pad(area, pad=10):
"""
Inner offset an area.
Args:
area: (upper_left_x, upper_left_y, bottom_right_x, bottom_right_y).
pad (int):
Returns:
tuple: (upper_left_x, upper_left_y, bottom_right_x, bottom_right_y).
"""
upper_left_x, upper_left_y, bottom_right_x, bottom_right_y = area
return upper_left_x + pad, upper_left_y + pad, bottom_right_x - pad, bottom_right_y - pad
def limit_in(x, lower, upper):
"""
Limit x within range (lower, upper)
Args:
x:
lower:
upper:
Returns:
int, float:
"""
return max(min(x, upper), lower)
def area_limit(area1, area2):
"""
Limit an area in another area.
Args:
area1: (upper_left_x, upper_left_y, bottom_right_x, bottom_right_y).
area2: (upper_left_x, upper_left_y, bottom_right_x, bottom_right_y).
Returns:
tuple: (upper_left_x, upper_left_y, bottom_right_x, bottom_right_y).
"""
x_lower, y_lower, x_upper, y_upper = area2
return (
limit_in(area1[0], x_lower, x_upper),
limit_in(area1[1], y_lower, y_upper),
limit_in(area1[2], x_lower, x_upper),
limit_in(area1[3], y_lower, y_upper),
)
def area_size(area):
"""
Area size or shape.
Args:
area: (upper_left_x, upper_left_y, bottom_right_x, bottom_right_y).
Returns:
tuple: (x, y).
"""
return (
max(area[2] - area[0], 0),
max(area[3] - area[1], 0)
)
def area_center(area):
"""
Get the center of an area
Args:
area: (upper_left_x, upper_left_y, bottom_right_x, bottom_right_y)
Returns:
tuple: (x, y)
"""
x1, y1, x2, y2 = area
return (x1 + x2) / 2, (y1 + y2) / 2
def point_limit(point, area):
"""
Limit point in an area.
Args:
point: (x, y).
area: (upper_left_x, upper_left_y, bottom_right_x, bottom_right_y).
Returns:
tuple: (x, y).
"""
return (
limit_in(point[0], area[0], area[2]),
limit_in(point[1], area[1], area[3])
)
def point_in_area(point, area, threshold=5):
"""
Args:
point: (x, y).
area: (upper_left_x, upper_left_y, bottom_right_x, bottom_right_y).
threshold: int
Returns:
bool:
"""
return area[0] - threshold < point[0] < area[2] + threshold and area[1] - threshold < point[1] < area[3] + threshold
def area_in_area(area1, area2, threshold=5):
"""
Args:
area1: (upper_left_x, upper_left_y, bottom_right_x, bottom_right_y).
area2: (upper_left_x, upper_left_y, bottom_right_x, bottom_right_y).
threshold: int
Returns:
bool:
"""
return area2[0] - threshold <= area1[0] \
and area2[1] - threshold <= area1[1] \
and area1[2] <= area2[2] + threshold \
and area1[3] <= area2[3] + threshold
def area_cross_area(area1, area2, threshold=5):
"""
Args:
area1: (upper_left_x, upper_left_y, bottom_right_x, bottom_right_y).
area2: (upper_left_x, upper_left_y, bottom_right_x, bottom_right_y).
threshold: int
Returns:
bool:
"""
# https://www.yiiven.cn/rect-is-intersection.html
xa1, ya1, xa2, ya2 = area1
xb1, yb1, xb2, yb2 = area2
return abs(xb2 + xb1 - xa2 - xa1) <= xa2 - xa1 + xb2 - xb1 + threshold * 2 \
and abs(yb2 + yb1 - ya2 - ya1) <= ya2 - ya1 + yb2 - yb1 + threshold * 2
def float2str(n, decimal=3):
"""
Args:
n (float):
decimal (int):
Returns:
str:
"""
return str(round(n, decimal)).ljust(decimal + 2, "0")
def point2str(x, y, length=4):
"""
Args:
x (int, float):
y (int, float):
length (int): Align length.
Returns:
str: String with numbers right aligned, such as '( 100, 80)'.
"""
return '(%s, %s)' % (str(int(x)).rjust(length), str(int(y)).rjust(length))
def col2name(col):
"""
Convert a zero indexed column cell reference to a string.
Args:
col: The cell column. Int.
Returns:
Column style string.
Examples:
0 -> A, 3 -> D, 35 -> AJ, -1 -> -A
"""
col_neg = col < 0
if col_neg:
col_num = -col
else:
col_num = col + 1 # Change to 1-index.
col_str = ''
while col_num:
# Set remainder from 1 .. 26
remainder = col_num % 26
if remainder == 0:
remainder = 26
# Convert the remainder to a character.
col_letter = chr(remainder + 64)
# Accumulate the column letters, right to left.
col_str = col_letter + col_str
# Get the next order of magnitude.
col_num = int((col_num - 1) / 26)
if col_neg:
return '-' + col_str
else:
return col_str
def name2col(col_str):
"""
Convert a cell reference in A1 notation to a zero indexed row and column.
Args:
col_str: A1 style string.
Returns:
row, col: Zero indexed cell row and column indices.
"""
# Convert base26 column string to number.
expn = 0
col = 0
col_neg = col_str.startswith('-')
col_str = col_str.strip('-').upper()
for char in reversed(col_str):
col += (ord(char) - 64) * (26 ** expn)
expn += 1
if col_neg:
return -col
else:
return col - 1 # Convert 1-index to zero-index
def node2location(node):
"""
See location2node()
Args:
node (str): Example: 'E3'
Returns:
tuple[int]: Example: (4, 2)
"""
res = REGEX_NODE.search(node)
if res:
x, y = res.group(1), res.group(2)
y = int(y)
if y > 0:
y -= 1
return name2col(x), y
else:
# Whatever
return ord(node[0]) % 32 - 1, int(node[1:]) - 1
def location2node(location):
"""
Convert location tuple to an Excel-like cell.
Accept negative values also.
-2 -1 0 1 2 3
-2 -B-2 -A-2 A-2 B-2 C-2 D-2
-1 -B-1 -A-1 A-1 B-1 C-1 D-1
0 -B1 -A1 A1 B1 C1 D1
1 -B2 -A2 A2 B2 C2 D2
2 -B3 -A3 A3 B3 C3 D3
3 -B4 -A4 A4 B4 C4 D4
# To generate the table above
index = range(-2, 4)
row = ' ' + ' '.join([str(i).rjust(4) for i in index])
print(row)
for y in index:
row = str(y).rjust(2) + ' ' + ' '.join([location2node((x, y)).rjust(4) for x in index])
print(row)
def check(node):
return point2str(*node2location(location2node(node)), length=2)
row = ' ' + ' '.join([str(i).rjust(8) for i in index])
print(row)
for y in index:
row = str(y).rjust(2) + ' ' + ' '.join([check((x, y)).rjust(4) for x in index])
print(row)
Args:
location (tuple[int]):
Returns:
str:
"""
x, y = location
if y >= 0:
y += 1
return col2name(x) + str(y)
def load_image(file, area=None):
"""
Load an image like pillow and drop alpha channel.
Args:
file (str):
area (tuple):
Returns:
np.ndarray:
"""
image = Image.open(file)
if area is not None:
image = image.crop(area)
image = np.array(image)
channel = image.shape[2] if len(image.shape) > 2 else 1
if channel > 3:
image = image[:, :, :3].copy()
return image
def save_image(image, file):
"""
Save an image like pillow.
Args:
image (np.ndarray):
file (str):
"""
# image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
# cv2.imwrite(file, image)
Image.fromarray(image).save(file)
def crop(image, area, copy=True):
"""
Crop image like pillow, when using opencv / numpy.
Provides a black background if cropping outside of image.
Args:
image (np.ndarray):
area:
copy (bool):
Returns:
np.ndarray:
"""
x1, y1, x2, y2 = map(int, map(round, area))
h, w = image.shape[:2]
border = np.maximum((0 - y1, y2 - h, 0 - x1, x2 - w), 0)
x1, y1, x2, y2 = np.maximum((x1, y1, x2, y2), 0)
image = image[y1:y2, x1:x2]
if sum(border) > 0:
image = cv2.copyMakeBorder(image, *border, borderType=cv2.BORDER_CONSTANT, value=(0, 0, 0))
if copy:
image = image.copy()
return image
def resize(image, size):
"""
Resize image like pillow image.resize(), but implement in opencv.
Pillow uses PIL.Image.NEAREST by default.
Args:
image (np.ndarray):
size: (x, y)
Returns:
np.ndarray:
"""
return cv2.resize(image, size, interpolation=cv2.INTER_NEAREST)
def image_channel(image):
"""
Args:
image (np.ndarray):
Returns:
int: 0 for grayscale, 3 for RGB.
"""
return image.shape[2] if len(image.shape) == 3 else 0
def image_size(image):
"""
Args:
image (np.ndarray):
Returns:
int, int: width, height
"""
shape = image.shape
return shape[1], shape[0]
def image_paste(image, background, origin):
"""
Paste an image on background.
This method does not return a value, but instead updates the array "background".
Args:
image:
background:
origin: Upper-left corner, (x, y)
"""
x, y = origin
w, h = image_size(image)
background[y:y + h, x:x + w] = image
def rgb2gray(image):
"""
Args:
image (np.ndarray): Shape (height, width, channel)
Returns:
np.ndarray: Shape (height, width)
"""
r, g, b = cv2.split(image)
return cv2.add(
cv2.multiply(cv2.max(cv2.max(r, g), b), 0.5),
cv2.multiply(cv2.min(cv2.min(r, g), b), 0.5)
)
def rgb2hsv(image):
"""
Convert RGB color space to HSV color space.
HSV is Hue Saturation Value.
Args:
image (np.ndarray): Shape (height, width, channel)
Returns:
np.ndarray: Hue (0~360), Saturation (0~100), Value (0~100).
"""
image = cv2.cvtColor(image, cv2.COLOR_RGB2HSV).astype(float)
image *= (360 / 180, 100 / 255, 100 / 255)
return image
def rgb2yuv(image):
"""
Convert RGB to YUV color space.
Args:
image (np.ndarray): Shape (height, width, channel)
Returns:
np.ndarray: Shape (height, width)
"""
image = cv2.cvtColor(image, cv2.COLOR_RGB2YUV)
return image
def rgb2luma(image):
"""
Convert RGB to the Y channel (Luminance) in YUV color space.
Args:
image (np.ndarray): Shape (height, width, channel)
Returns:
np.ndarray: Shape (height, width)
"""
image = cv2.cvtColor(image, cv2.COLOR_RGB2YUV)
luma, _, _ = cv2.split(image)
return luma
def get_color(image, area):
"""Calculate the average color of a particular area of the image.
Args:
image (np.ndarray): Screenshot.
area (tuple): (upper_left_x, upper_left_y, bottom_right_x, bottom_right_y)
Returns:
tuple: (r, g, b)
"""
temp = crop(image, area, copy=False)
color = cv2.mean(temp)
return color[:3]
def get_bbox(image, threshold=0):
"""
A numpy implementation of the getbbox() in pillow.
Args:
image (np.ndarray): Screenshot.
threshold (int): Color <= threshold will be considered black
Returns:
tuple: (upper_left_x, upper_left_y, bottom_right_x, bottom_right_y)
"""
if image_channel(image) == 3:
image = np.max(image, axis=2)
x = np.where(np.max(image, axis=0) > threshold)[0]
y = np.where(np.max(image, axis=1) > threshold)[0]
return x[0], y[0], x[-1] + 1, y[-1] + 1
def get_bbox_reversed(image, threshold=0):
"""
Similar to `get_bbox` but for black contents on white background.
Args:
image (np.ndarray): Screenshot.
threshold (int): Color >= threshold will be considered white
Returns:
tuple: (upper_left_x, upper_left_y, bottom_right_x, bottom_right_y)
"""
if image_channel(image) == 3:
image = np.min(image, axis=2)
x = np.where(np.min(image, axis=0) < threshold)[0]
y = np.where(np.min(image, axis=1) < threshold)[0]
return x[0], y[0], x[-1] + 1, y[-1] + 1
def color_similarity(color1, color2):
"""
Args:
color1 (tuple): (r, g, b)
color2 (tuple): (r, g, b)
Returns:
int:
"""
diff = np.array(color1).astype(int) - np.array(color2).astype(int)
diff = np.max(np.maximum(diff, 0)) - np.min(np.minimum(diff, 0))
return diff
def color_similar(color1, color2, threshold=10):
"""Consider two colors are similar, if tolerance lesser or equal threshold.
Tolerance = Max(Positive(difference_rgb)) + Max(- Negative(difference_rgb))
The same as the tolerance in Photoshop.
Args:
color1 (tuple): (r, g, b)
color2 (tuple): (r, g, b)
threshold (int): Default to 10.
Returns:
bool: True if two colors are similar.
"""
# print(color1, color2)
diff = np.array(color1).astype(int) - np.array(color2).astype(int)
diff = np.max(np.maximum(diff, 0)) - np.min(np.minimum(diff, 0))
return diff <= threshold
def color_similar_1d(image, color, threshold=10):
"""
Args:
image (np.ndarray): 1D array.
color: (r, g, b)
threshold(int): Default to 10.
Returns:
np.ndarray: bool
"""
diff = image.astype(int) - color
diff = np.max(np.maximum(diff, 0), axis=1) - np.min(np.minimum(diff, 0), axis=1)
return diff <= threshold
def color_similarity_2d(image, color):
"""
Args:
image: 2D array.
color: (r, g, b)
Returns:
np.ndarray: uint8
"""
r, g, b = cv2.split(cv2.subtract(image, (*color, 0)))
positive = cv2.max(cv2.max(r, g), b)
r, g, b = cv2.split(cv2.subtract((*color, 0), image))
negative = cv2.max(cv2.max(r, g), b)
return cv2.subtract(255, cv2.add(positive, negative))
def extract_letters(image, letter=(255, 255, 255), threshold=128):
"""Set letter color to black, set background color to white.
Args:
image: Shape (height, width, channel)
letter (tuple): Letter RGB.
threshold (int):
Returns:
np.ndarray: Shape (height, width)
"""
r, g, b = cv2.split(cv2.subtract(image, (*letter, 0)))
positive = cv2.max(cv2.max(r, g), b)
r, g, b = cv2.split(cv2.subtract((*letter, 0), image))
negative = cv2.max(cv2.max(r, g), b)
return cv2.multiply(cv2.add(positive, negative), 255.0 / threshold)
def extract_white_letters(image, threshold=128):
"""Set letter color to black, set background color to white.
This function will discourage color pixels (Non-gray pixels)
Args:
image: Shape (height, width, channel)
threshold (int):
Returns:
np.ndarray: Shape (height, width)
"""
r, g, b = cv2.split(cv2.subtract((255, 255, 255, 0), image))
minimum = cv2.min(cv2.min(r, g), b)
maximum = cv2.max(cv2.max(r, g), b)
return cv2.multiply(cv2.add(maximum, cv2.subtract(maximum, minimum)), 255.0 / threshold)
def color_mapping(image, max_multiply=2):
"""
Mapping color to 0-255.
Minimum color to 0, maximum color to 255, multiply colors by 2 at max.
Args:
image (np.ndarray):
max_multiply (int, float):
Returns:
np.ndarray:
"""
image = image.astype(float)
low, high = np.min(image), np.max(image)
multiply = min(255 / (high - low), max_multiply)
add = (255 - multiply * (low + high)) / 2
image = cv2.add(cv2.multiply(image, multiply), add)
image[image > 255] = 255
image[image < 0] = 0
return image.astype(np.uint8)
def image_left_strip(image, threshold, length):
"""
In `DAILY:200/200` strip `DAILY:` and leave `200/200`
Args:
image (np.ndarray): (height, width)
threshold (int):
0-255
The first column with brightness lower than this
will be considered as left edge.
length (int):
Strip this length of image after the left edge
Returns:
np.ndarray:
"""
brightness = np.mean(image, axis=0)
match = np.where(brightness < threshold)[0]
if len(match):
left = match[0] + length
total = image.shape[1]
if left < total:
image = image[:, left:]
return image
def red_overlay_transparency(color1, color2, red=247):
"""Calculate the transparency of red overlay.
Args:
color1: origin color.
color2: changed color.
red(int): red color 0-255. Default to 247.
Returns:
float: 0-1
"""
return (color2[0] - color1[0]) / (red - color1[0])
def color_bar_percentage(image, area, prev_color, reverse=False, starter=0, threshold=30):
"""
Args:
image:
area:
prev_color:
reverse: True if bar goes from right to left.
starter:
threshold:
Returns:
float: 0 to 1.
"""
image = crop(image, area)
image = image[:, ::-1, :] if reverse else image
length = image.shape[1]
prev_index = starter
for _ in range(1280):
bar = color_similarity_2d(image, color=prev_color)
index = np.where(np.any(bar > 255 - threshold, axis=0))[0]
if not index.size:
return prev_index / length
else:
index = index[-1]
if index <= prev_index:
return index / length
prev_index = index
prev_row = bar[:, prev_index] > 255 - threshold
if not prev_row.size:
return prev_index / length
prev_color = np.mean(image[:, prev_index], axis=0)
return 0.