mirror of
https://github.com/LmeSzinc/StarRailCopilot.git
synced 2024-11-27 10:36:23 +00:00
166 lines
5.8 KiB
Python
166 lines
5.8 KiB
Python
import time
|
|
|
|
import cv2
|
|
import numpy as np
|
|
from PIL import Image
|
|
from cnocr import CnOcr
|
|
|
|
from module.base.button import Button
|
|
from module.base.utils import extract_letters
|
|
from module.logger import logger
|
|
|
|
OCR_MODELS = {
|
|
# Font: Impact, AgencyFB
|
|
# Charset: 0123456789
|
|
'digit': CnOcr(root='./cnocr_models/digit', model_epoch=60),
|
|
# Font: Impact
|
|
# Charset: 0123456789ABCDEFSP-:/
|
|
'stage': CnOcr(root='./cnocr_models/stage', model_epoch=56),
|
|
|
|
'cnocr': CnOcr(root='./cnocr_models/cnocr', model_epoch=20)
|
|
}
|
|
image_shape = (280, 32)
|
|
width_range = (0.6, 1.4)
|
|
text_length = (1, 6)
|
|
text_interval = (0, 10)
|
|
y_range = (-2, 2)
|
|
|
|
|
|
class Ocr:
|
|
def __init__(self, buttons, lang, letter=(255, 255, 255), back=(0, 0, 0), mid_process_height=70, threshold=127,
|
|
additional_preprocess=None, use_binary=True, length=None, white_list=None, name='OCR'):
|
|
"""
|
|
Args:
|
|
lang (str): OCR model. in ['digit', 'cnocr'].
|
|
letter (tuple(int)): Letter RGB.
|
|
back (tuple(int)): Background RGB.
|
|
mid_process_height (int): 70
|
|
additional_preprocess (callable):
|
|
use_binary (bool):
|
|
length (int, tuple(int)): Expected length.
|
|
white_list (str): Expected str.
|
|
buttons (Button, List[Button]): Button or list of Button instance.
|
|
"""
|
|
self.lang = lang
|
|
self.cnocr = OCR_MODELS[lang]
|
|
self.letter = letter
|
|
self.back = back
|
|
self.mid_process_height = mid_process_height
|
|
self.threshold = threshold
|
|
self.additional_preprocess = additional_preprocess
|
|
self.use_binary=use_binary
|
|
self.length = (length, length) if isinstance(length, int) else length
|
|
self.white_list = white_list
|
|
self.buttons = buttons if isinstance(buttons, list) else [buttons]
|
|
self.name = str(buttons) if isinstance(buttons, Button) else name
|
|
|
|
def additional_preprocess_example(self, image):
|
|
"""
|
|
Args:
|
|
image (np.ndarray): data range: [0, 255], dtype: float. shape: [?, 70]
|
|
|
|
Returns:
|
|
np.ndarray: data range: [0, 255], dtype: float.
|
|
"""
|
|
pass
|
|
|
|
def pre_process(self, image):
|
|
"""
|
|
Args:
|
|
image: A cropped screenshot.
|
|
|
|
Returns:
|
|
np.ndarray: shape: [70, 280]. data range: [0, 1]
|
|
"""
|
|
# Resize to height=70.
|
|
size = (int(image.size[0] / image.size[1] * self.mid_process_height), self.mid_process_height)
|
|
image = image.resize(size, Image.BILINEAR)
|
|
|
|
# Set letter color to black, set background color to white.
|
|
image = extract_letters(image, letter=self.letter, back=self.back)
|
|
|
|
# Additional preprocess.
|
|
if self.additional_preprocess is not None:
|
|
image = self.additional_preprocess(image)
|
|
|
|
# Binarization.
|
|
if self.use_binary:
|
|
_, image = cv2.threshold(image, self.threshold, 255, cv2.THRESH_BINARY)
|
|
|
|
# Resize to input size.
|
|
size = (int(image.shape[1] / image.shape[0] * image_shape[1]), image_shape[1])
|
|
image = cv2.resize(image, size, interpolation=cv2.INTER_LINEAR)
|
|
diff_x = image_shape[0] - image.shape[1]
|
|
if diff_x > 0:
|
|
image = np.pad(image, ((0, 0), (0, diff_x)), mode='constant', constant_values=255)
|
|
else:
|
|
image = image[:, :image_shape[0]]
|
|
|
|
# Image.fromarray(image.astype('uint8')).show()
|
|
|
|
return image / 255.0
|
|
|
|
def after_process(self, result):
|
|
"""
|
|
Args:
|
|
result (list[str]): ['第', '二', '行']
|
|
|
|
Returns:
|
|
str:
|
|
"""
|
|
result = ''.join(result)
|
|
|
|
if self.length is not None:
|
|
if len(result) > self.length[1] or len(result) < self.length[0]:
|
|
logger.warning(f'OCR result length unexpected. Expect: {self.length}. Result: {len(result)}')
|
|
if self.white_list:
|
|
for letter in result:
|
|
if letter not in self.white_list:
|
|
logger.warning(f'OCR letter unexpected. Letter: {letter}. White_list: {self.white_list}')
|
|
|
|
return result
|
|
|
|
def ocr(self, image):
|
|
start_time = time.time()
|
|
|
|
image_list = [self.pre_process(image.crop(button.area)) for button in self.buttons]
|
|
result_list = self.cnocr.ocr_for_single_lines(image_list)
|
|
result_list = [self.after_process(result) for result in result_list]
|
|
|
|
if len(self.buttons) == 1:
|
|
result_list = result_list[0]
|
|
logger.attr(name='%s %ss' % (self.name, str(round(time.time() - start_time, 3)).ljust(5, '0')),
|
|
text=str(result_list))
|
|
|
|
return result_list
|
|
|
|
|
|
class Digit(Ocr):
|
|
def __init__(self, buttons, letter=(255, 255, 255), back=(0, 0, 0), mid_process_height=70, threshold=127,
|
|
additional_preprocess=None, length=None, white_list=None, limit=None, name='OCR'):
|
|
super().__init__(buttons=buttons, lang='digit', letter=letter, back=back, mid_process_height=mid_process_height,
|
|
threshold=threshold,
|
|
additional_preprocess=additional_preprocess, length=length, white_list=white_list, name=name)
|
|
self.limit = (0, limit) if isinstance(limit, int) else limit
|
|
|
|
def after_process(self, raw):
|
|
"""
|
|
Returns:
|
|
int:
|
|
"""
|
|
raw = super().after_process(raw)
|
|
if not raw:
|
|
result = 0
|
|
else:
|
|
result = int(raw)
|
|
|
|
if self.limit:
|
|
if result < self.limit[0]:
|
|
logger.info(f'OCR result smaller than expected. Expect: {self.limit}. Raw: {raw}. Treat as: {result}')
|
|
result = self.limit[0]
|
|
if result > self.limit[1]:
|
|
logger.info(f'OCR result bigger than expected. Expect: {self.limit}. Raw: {raw}. Treat as: {result}')
|
|
result = self.limit[1]
|
|
|
|
return result
|