StarRailCopilot/tasks/item/inventory.py

369 lines
12 KiB
Python

import cv2
import numpy as np
from scipy import signal
from module.base.base import ModuleBase
from module.base.button import ButtonWrapper
from module.base.decorator import cached_property
from module.base.timer import Timer
from module.base.utils import Lines, area_center, area_offset, color_similarity_2d
from module.logger import logger
def xywh2xyxy(area):
"""
Convert (x, y, width, height) to (x1, y1, x2, y2)
"""
x, y, w, h = area
return x, y, x + w, y + h
def xyxy2xywh(area):
"""
Convert (x1, y1, x2, y2) to (x, y, width, height)
"""
x1, y1, x2, y2 = area
return min(x1, x2), min(y1, y2), abs(x2 - x1), abs(y2 - y1)
class InventoryItem:
def __init__(self, main: ModuleBase, loca: tuple[int, int], point: tuple[int, int]):
self.main = main
self.loca = loca
self.point = point
def __str__(self):
return f'Item({self.loca})'
__repr__ = __str__
def crop(self, area, copy=False):
area = area_offset(area, offset=self.point)
return self.main.image_crop(area, copy=copy)
@cached_property
def button(self):
area = area_offset((-40, -20, 40, 20), offset=self.point)
return area
@cached_property
def is_selected(self):
image = self.crop((-60, -100, 60, 40))
image = color_similarity_2d(image, (255, 255, 255))
param = {
'height': 160,
}
hori = cv2.reduce(image, 1, cv2.REDUCE_AVG).flatten()
peaks, _ = signal.find_peaks(hori, **param)
if len(peaks) != 2:
return False
vert = cv2.reduce(image, 0, cv2.REDUCE_AVG).flatten()
peaks, _ = signal.find_peaks(vert, **param)
if len(peaks) != 2:
return False
return True
class InventoryManager:
GRID_DELTA = (104, 124)
ERROR_LINES_TOLERANCE = (-10, 10)
COINCIDENT_POINT_ENCOURAGE_DISTANCE = 1.
MAXIMUM_ITEMS = 30
def __init__(self, main: ModuleBase, inventory: ButtonWrapper):
"""
max_count: expected max count of this inventory page
"""
self.main = main
self.inventory = inventory
self.items: dict[tuple[int, int], InventoryItem] = {}
self.selected: InventoryItem | None = None
def mid_cleanse(self, mids, mid_diff_range, edge_range):
"""
Args:
mids:
mid_diff_range:
edge_range:
Returns:
"""
count = len(mids)
if count == 1:
return mids
# Only one row, [173.5 175. ]
mid_diff_mean = np.mean(mid_diff_range)
diff = max(mids) - min(mids)
if diff < mid_diff_mean * 0.3:
return np.mean(mids).reshape((1,))
# Double rows
if count == 2:
return mids
# print(mids)
encourage = self.COINCIDENT_POINT_ENCOURAGE_DISTANCE ** 2
# Drawing lines
def iter_lines():
for index, mid in enumerate(mids):
for n in range(self.ERROR_LINES_TOLERANCE[0], self.ERROR_LINES_TOLERANCE[1] + 1):
theta = np.arctan(index + n)
rho = mid * np.cos(theta)
yield [rho, theta]
def coincident_point_value(point):
"""Value that measures how close a point to the coincident point. The smaller the better.
Coincident point may be many.
Use an activation function to encourage a group of coincident lines and ignore wrong lines.
"""
x, y = point
# Do not use:
# distance = coincident.distance_to_point(point)
distance = np.abs(x - coincident.get_x(y))
# print((distance * 1).astype(int).reshape(len(mids), np.diff(self.config.ERROR_LINES_TOLERANCE)[0]+1))
# Activation function
# distance = 1 / (1 + np.exp(16 / distance - distance))
distance = 1 / (1 + np.exp(encourage / distance) / distance)
distance = np.sum(distance)
return distance
# Fitting mid
coincident = Lines(np.vstack(list(iter_lines())), is_horizontal=False)
coincident_point_range = (
(
-abs(self.ERROR_LINES_TOLERANCE[0]) * mid_diff_range[1] + edge_range[0],
abs(self.ERROR_LINES_TOLERANCE[1]) * mid_diff_range[1] + edge_range[1]
),
mid_diff_range
)
from scipy import optimize
coincident_point = optimize.brute(coincident_point_value, coincident_point_range)
# print(coincident_point)
# Filling mid
left, right = edge_range
mids = np.arange(-25, 25) * coincident_point[1] + coincident_point[0]
mids = mids[(mids > left) & (mids < right)]
# print(mids)
return mids
def update(self):
image = self.main.image_crop(self.inventory, copy=False)
image = color_similarity_2d(image, color=(252, 200, 109))
# Search rarity stars
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel, dst=image)
# image_star = cv2.inRange(image, 221, 255)
# Close rarity stars as item
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (25, 3))
cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernel, dst=image)
image_item = cv2.inRange(image, 221, 255)
# from PIL import Image
# Image.fromarray(image_item).show()
def iter_area(im):
# Iter matched area from given image
contours, _ = cv2.findContours(im, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
for cont in contours:
rect = cv2.boundingRect(cv2.convexHull(cont).astype(np.float32))
# width < 5stars and height < 1star
if not (65 > rect[2] >= 5 and 10 > rect[3]):
continue
rect = xywh2xyxy(rect)
rect = area_center(rect)
yield rect
area_item = list(iter_area(image_item))
# Re-generate a correct xy array
points = np.array(area_item)
points += self.inventory.area[:2]
area = self.inventory.area
x_list = np.unique(np.sort(points[:, 0]))
y_list = np.unique(np.sort(points[:, 1]))
# print(x_list)
# print(y_list)
x_list = self.mid_cleanse(
x_list,
mid_diff_range=(self.GRID_DELTA[0] - 3, self.GRID_DELTA[0] + 3),
edge_range=(area[0], area[2])
)
y_list = self.mid_cleanse(
y_list,
mid_diff_range=(self.GRID_DELTA[1] - 3, self.GRID_DELTA[1] + 3),
edge_range=(area[1], area[3])
)
# print(x_list)
# print(y_list)
def is_near_existing(p):
diff = np.linalg.norm(points - p, axis=1)
return np.any(diff < 3)
def iter_items():
y_max = -1
for y in y_list:
for x in x_list:
if is_near_existing((x, y)):
y_max = y
break
for yi, y in enumerate(y_list):
if y < y_max:
# Fill items
for xi, x in enumerate(x_list):
yield InventoryItem(main=self.main, loca=(xi, yi), point=(int(x), int(y)))
elif y == y_max:
# Fill until the last item
x_max = -1
for xi, x in enumerate(x_list):
if is_near_existing((x, y)):
x_max = xi
for xi, x in enumerate(x_list):
if xi <= x_max:
yield InventoryItem(main=self.main, loca=(xi, yi), point=(int(x), int(y)))
else:
break
# Re-generate items
self.items = {}
selected = []
for item in iter_items():
self.items[item.loca] = item
if item.is_selected:
selected.append(item)
# Check selected
self.selected = None
count = len(selected)
if count == 0:
# logger.warning('Inventory has no item selected')
pass
elif count > 1:
logger.warning(f'Inventory has multiple items selected: {selected}')
self.selected = selected[0]
else:
self.selected = selected[0]
count = len(self.items)
logger.info(f'Inventory: {count} items, selected {self.selected}')
if count > self.MAXIMUM_ITEMS:
logger.warning('Too many inventory items detected')
def get_row_first(self, row=1, first=0) -> InventoryItem | None:
"""
Get the first item of the next row
Args:
row: 1 for next row, -1 for prev row
first: 0 for the first_item
"""
if self.selected == None:
return None
loca = self.selected.loca
loca = (first, loca[1] + row)
try:
return self.items[loca]
except KeyError:
return None
def get_right(self) -> InventoryItem | None:
"""
Get the right item of the selected
"""
if self.selected == None:
return None
loca = self.selected.loca
loca = (loca[0] + 1, loca[1])
try:
return self.items[loca]
except KeyError:
return None
def get_first(self) -> InventoryItem | None:
"""
Get the first item of inventory
"""
try:
return self.items[(0, 0)]
except KeyError:
return None
def select(self, item, skip_first_screenshot=True):
logger.info(f'Inventory select {item}')
if isinstance(item, InventoryItem):
loca = item.loca
else:
loca = item
interval = Timer(2, count=6)
clicked = False
while 1:
if skip_first_screenshot:
skip_first_screenshot = False
else:
self.main.device.screenshot()
self.update()
if len(self.items) > self.MAXIMUM_ITEMS:
continue
try:
item = self.items[loca]
except KeyError:
logger.warning(f'Item {loca} is not in inventory, cannot select')
continue
# End
if clicked and item.is_selected:
logger.info('Inventory item selected')
break
# Click
if interval.reached():
self.main.device.click(item)
interval.reset()
clicked = True
continue
def wait_selected(self, select_first=False, skip_first_screenshot=True):
"""
Args:
select_first: True to click first item if no item was selected
skip_first_screenshot:
Returns:
bool: If success
"""
timeout = Timer(2, count=6).start()
interval = Timer(1, count=3)
while 1:
if skip_first_screenshot:
skip_first_screenshot = False
else:
self.main.device.screenshot()
self.update()
# End
if timeout.reached():
logger.warning('Wait inventory selected timeout')
return False
if len(self.items) > self.MAXIMUM_ITEMS:
continue
if self.selected is not None:
return True
# Click
if select_first:
first = self.get_first()
if first is None:
logger.warning(f'No items detected, cannot select inventory')
elif interval.reached():
self.main.device.click(first)
interval.reset()