mirror of
https://github.com/LmeSzinc/StarRailCopilot.git
synced 2024-11-27 02:27:12 +00:00
90 lines
3.1 KiB
Python
90 lines
3.1 KiB
Python
import numpy as np
|
|
|
|
from module.base.utils import area_in_area
|
|
from module.config.config import AzurLaneConfig
|
|
from module.logger import logger
|
|
from module.map.grid import Grid
|
|
from module.map.perspective import Perspective, Lines
|
|
|
|
|
|
class Grids(Perspective):
|
|
def __init__(self, image, config):
|
|
"""
|
|
Args:
|
|
image:
|
|
config(AzurLaneConfig):
|
|
"""
|
|
self.image = image
|
|
self.config = config
|
|
# try:
|
|
super().__init__(image, config)
|
|
|
|
self.grids = {}
|
|
for grid in self._gen():
|
|
self.grids[grid.location] = grid
|
|
|
|
# Handle offset.
|
|
offset = np.min(list(self.grids.keys()), axis=0)
|
|
if np.sum(offset) > 0:
|
|
logger.info(' Grids offset: %s.' % str(tuple(offset)))
|
|
self.vertical = self.vertical[offset[0]:]
|
|
self.horizontal = self.horizontal[offset[1]:]
|
|
self.grids = {}
|
|
for grid in self._gen():
|
|
self.grids[grid.location] = grid
|
|
|
|
self.center_grid = (
|
|
np.where(self.vertical.distance_to_point(self.config.SCREEN_CENTER) >= 0)[0][0] - 1,
|
|
np.where(self.horizontal.distance_to_point(self.config.SCREEN_CENTER) >= 0)[0][0] - 1
|
|
)
|
|
self.center_offset = self.grids[self.center_grid].screen_point_to_grid_location(self.config.SCREEN_CENTER)
|
|
self.shape = np.max(list(self.grids.keys()), axis=0)
|
|
|
|
# self.save_error_image()
|
|
# except:
|
|
# logger.warn('Perspective error')
|
|
# pass
|
|
# self.save_error_image()
|
|
|
|
# def save(self, folder='../screenshot'):
|
|
# timestamp = str(int(time.time() * 1000))
|
|
# self.image.save(os.path.join(folder, 'z_%s.png' % timestamp))
|
|
# for grid in self.grids.values():
|
|
# file = os.path.join(folder, '%s_%s_%s.png' % (timestamp, grid.location[0], grid.location[1]))
|
|
# grid.image_icon().save(file)
|
|
|
|
def __iter__(self):
|
|
return iter(self.grids.values())
|
|
|
|
def __getitem__(self, item):
|
|
return self.grids[tuple(item)]
|
|
|
|
def __contains__(self, item):
|
|
return tuple(item) in self.grids
|
|
|
|
def _gen(self):
|
|
for x, vert in enumerate(zip(self.vertical[:-1], self.vertical[1:])):
|
|
for y, hori in enumerate(zip(self.horizontal[:-1], self.horizontal[1:])):
|
|
vert = Lines(np.vstack(vert), is_horizontal=False, config=self.config)
|
|
hori = Lines(np.vstack(hori), is_horizontal=True, config=self.config)
|
|
cross = hori.cross(vert)
|
|
area = np.append(cross[0], cross[3])
|
|
|
|
if area_in_area(area, self.config.DETECTING_AREA):
|
|
grid = Grid(location=(x, y), image=self.image, corner=cross.points)
|
|
yield grid
|
|
|
|
def show(self):
|
|
for y in range(self.shape[1] + 1):
|
|
text = ' '.join([self[(x, y)].str if (x, y) in self else ' ' for x in range(self.shape[0] + 1)])
|
|
logger.info(text)
|
|
|
|
def predict(self):
|
|
for grid in self:
|
|
grid.predict()
|
|
|
|
def update(self, image):
|
|
self.image = image
|
|
for grid in self:
|
|
grid.image = image
|