Nagram/TMessagesProj/jni/boringssl/crypto/fipsmodule/ec/wnaf.c

475 lines
13 KiB
C
Raw Normal View History

2018-07-30 02:07:02 +00:00
/* Originally written by Bodo Moeller for the OpenSSL project.
* ====================================================================
* Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
/* ====================================================================
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
*
* Portions of the attached software ("Contribution") are developed by
* SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
*
* The Contribution is licensed pursuant to the OpenSSL open source
* license provided above.
*
* The elliptic curve binary polynomial software is originally written by
* Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
* Laboratories. */
#include <openssl/ec.h>
#include <string.h>
#include <openssl/bn.h>
#include <openssl/err.h>
#include <openssl/mem.h>
#include <openssl/thread.h>
#include "internal.h"
#include "../../internal.h"
// This file implements the wNAF-based interleaving multi-exponentiation method
// at:
// http://link.springer.com/chapter/10.1007%2F3-540-45537-X_13
// http://www.bmoeller.de/pdf/TI-01-08.multiexp.pdf
// Determine the modified width-(w+1) Non-Adjacent Form (wNAF) of 'scalar'.
// This is an array r[] of values that are either zero or odd with an
// absolute value less than 2^w satisfying
// scalar = \sum_j r[j]*2^j
// where at most one of any w+1 consecutive digits is non-zero
// with the exception that the most significant digit may be only
// w-1 zeros away from that next non-zero digit.
static int8_t *compute_wNAF(const BIGNUM *scalar, int w, size_t *ret_len) {
int window_val;
int ok = 0;
int8_t *r = NULL;
int sign = 1;
int bit, next_bit, mask;
size_t len = 0, j;
if (BN_is_zero(scalar)) {
r = OPENSSL_malloc(1);
if (!r) {
OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
goto err;
}
r[0] = 0;
*ret_len = 1;
return r;
}
// 'int8_t' can represent integers with absolute values less than 2^7.
if (w <= 0 || w > 7) {
OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
goto err;
}
bit = 1 << w; // at most 128
next_bit = bit << 1; // at most 256
mask = next_bit - 1; // at most 255
if (BN_is_negative(scalar)) {
sign = -1;
}
len = BN_num_bits(scalar);
// The modified wNAF may be one digit longer than binary representation
// (*ret_len will be set to the actual length, i.e. at most
// BN_num_bits(scalar) + 1).
r = OPENSSL_malloc(len + 1);
if (r == NULL) {
OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
goto err;
}
window_val = scalar->d[0] & mask;
j = 0;
// If j+w+1 >= len, window_val will not increase.
while (window_val != 0 || j + w + 1 < len) {
int digit = 0;
// 0 <= window_val <= 2^(w+1)
if (window_val & 1) {
// 0 < window_val < 2^(w+1)
if (window_val & bit) {
digit = window_val - next_bit; // -2^w < digit < 0
#if 1 // modified wNAF
if (j + w + 1 >= len) {
// special case for generating modified wNAFs:
// no new bits will be added into window_val,
// so using a positive digit here will decrease
// the total length of the representation
digit = window_val & (mask >> 1); // 0 < digit < 2^w
}
#endif
} else {
digit = window_val; // 0 < digit < 2^w
}
if (digit <= -bit || digit >= bit || !(digit & 1)) {
OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
goto err;
}
window_val -= digit;
// Now window_val is 0 or 2^(w+1) in standard wNAF generation;
// for modified window NAFs, it may also be 2^w.
if (window_val != 0 && window_val != next_bit && window_val != bit) {
OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
goto err;
}
}
r[j++] = sign * digit;
window_val >>= 1;
window_val += bit * BN_is_bit_set(scalar, j + w);
if (window_val > next_bit) {
OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
goto err;
}
}
if (j > len + 1) {
OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
goto err;
}
len = j;
ok = 1;
err:
if (!ok) {
OPENSSL_free(r);
r = NULL;
}
if (ok) {
*ret_len = len;
}
return r;
}
// TODO: table should be optimised for the wNAF-based implementation,
// sometimes smaller windows will give better performance
// (thus the boundaries should be increased)
static size_t window_bits_for_scalar_size(size_t b) {
if (b >= 2000) {
return 6;
}
if (b >= 800) {
return 5;
}
if (b >= 300) {
return 4;
}
if (b >= 70) {
return 3;
}
if (b >= 20) {
return 2;
}
return 1;
}
int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r,
const EC_SCALAR *g_scalar_raw, const EC_POINT *p,
const EC_SCALAR *p_scalar_raw, BN_CTX *ctx) {
BN_CTX *new_ctx = NULL;
const EC_POINT *generator = NULL;
EC_POINT *tmp = NULL;
size_t total_num = 0;
size_t i, j;
int k;
int r_is_inverted = 0;
int r_is_at_infinity = 1;
size_t *wsize = NULL; // individual window sizes
int8_t **wNAF = NULL; // individual wNAFs
size_t *wNAF_len = NULL;
size_t max_len = 0;
size_t num_val = 0;
EC_POINT **val = NULL; // precomputation
EC_POINT **v;
EC_POINT ***val_sub = NULL; // pointers to sub-arrays of 'val'
int ret = 0;
if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL) {
goto err;
}
}
BN_CTX_start(ctx);
// Convert from |EC_SCALAR| to |BIGNUM|. |BIGNUM| is not constant-time, but
// neither is the rest of this function.
BIGNUM *g_scalar = NULL, *p_scalar = NULL;
if (g_scalar_raw != NULL) {
g_scalar = BN_CTX_get(ctx);
if (g_scalar == NULL ||
!bn_set_words(g_scalar, g_scalar_raw->words, group->order.top)) {
goto err;
}
}
if (p_scalar_raw != NULL) {
p_scalar = BN_CTX_get(ctx);
if (p_scalar == NULL ||
!bn_set_words(p_scalar, p_scalar_raw->words, group->order.top)) {
goto err;
}
}
// TODO: This function used to take |points| and |scalars| as arrays of
// |num| elements. The code below should be simplified to work in terms of |p|
// and |p_scalar|.
size_t num = p != NULL ? 1 : 0;
const EC_POINT **points = p != NULL ? &p : NULL;
BIGNUM **scalars = p != NULL ? &p_scalar : NULL;
total_num = num;
if (g_scalar != NULL) {
generator = EC_GROUP_get0_generator(group);
if (generator == NULL) {
OPENSSL_PUT_ERROR(EC, EC_R_UNDEFINED_GENERATOR);
goto err;
}
++total_num; // treat 'g_scalar' like 'num'-th element of 'scalars'
}
wsize = OPENSSL_malloc(total_num * sizeof(wsize[0]));
wNAF_len = OPENSSL_malloc(total_num * sizeof(wNAF_len[0]));
wNAF = OPENSSL_malloc(total_num * sizeof(wNAF[0]));
val_sub = OPENSSL_malloc(total_num * sizeof(val_sub[0]));
// Ensure wNAF is initialised in case we end up going to err.
if (wNAF != NULL) {
OPENSSL_memset(wNAF, 0, total_num * sizeof(wNAF[0]));
}
if (!wsize || !wNAF_len || !wNAF || !val_sub) {
OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
goto err;
}
// num_val will be the total number of temporarily precomputed points
num_val = 0;
for (i = 0; i < total_num; i++) {
size_t bits;
bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(g_scalar);
wsize[i] = window_bits_for_scalar_size(bits);
num_val += (size_t)1 << (wsize[i] - 1);
wNAF[i] =
compute_wNAF((i < num ? scalars[i] : g_scalar), wsize[i], &wNAF_len[i]);
if (wNAF[i] == NULL) {
goto err;
}
if (wNAF_len[i] > max_len) {
max_len = wNAF_len[i];
}
}
// All points we precompute now go into a single array 'val'. 'val_sub[i]' is
// a pointer to the subarray for the i-th point.
val = OPENSSL_malloc(num_val * sizeof(val[0]));
if (val == NULL) {
OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
goto err;
}
OPENSSL_memset(val, 0, num_val * sizeof(val[0]));
// allocate points for precomputation
v = val;
for (i = 0; i < total_num; i++) {
val_sub[i] = v;
for (j = 0; j < ((size_t)1 << (wsize[i] - 1)); j++) {
*v = EC_POINT_new(group);
if (*v == NULL) {
goto err;
}
v++;
}
}
if (!(v == val + num_val)) {
OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
goto err;
}
if (!(tmp = EC_POINT_new(group))) {
goto err;
}
// prepare precomputed values:
// val_sub[i][0] := points[i]
// val_sub[i][1] := 3 * points[i]
// val_sub[i][2] := 5 * points[i]
// ...
for (i = 0; i < total_num; i++) {
if (i < num) {
if (!EC_POINT_copy(val_sub[i][0], points[i])) {
goto err;
}
} else if (!EC_POINT_copy(val_sub[i][0], generator)) {
goto err;
}
if (wsize[i] > 1) {
if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx)) {
goto err;
}
for (j = 1; j < ((size_t)1 << (wsize[i] - 1)); j++) {
if (!EC_POINT_add(group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx)) {
goto err;
}
}
}
}
#if 1 // optional; window_bits_for_scalar_size assumes we do this step
if (!EC_POINTs_make_affine(group, num_val, val, ctx)) {
goto err;
}
#endif
r_is_at_infinity = 1;
for (k = max_len - 1; k >= 0; k--) {
if (!r_is_at_infinity && !EC_POINT_dbl(group, r, r, ctx)) {
goto err;
}
for (i = 0; i < total_num; i++) {
if (wNAF_len[i] > (size_t)k) {
int digit = wNAF[i][k];
int is_neg;
if (digit) {
is_neg = digit < 0;
if (is_neg) {
digit = -digit;
}
if (is_neg != r_is_inverted) {
if (!r_is_at_infinity && !EC_POINT_invert(group, r, ctx)) {
goto err;
}
r_is_inverted = !r_is_inverted;
}
// digit > 0
if (r_is_at_infinity) {
if (!EC_POINT_copy(r, val_sub[i][digit >> 1])) {
goto err;
}
r_is_at_infinity = 0;
} else {
if (!EC_POINT_add(group, r, r, val_sub[i][digit >> 1], ctx)) {
goto err;
}
}
}
}
}
}
if (r_is_at_infinity) {
if (!EC_POINT_set_to_infinity(group, r)) {
goto err;
}
} else if (r_is_inverted && !EC_POINT_invert(group, r, ctx)) {
goto err;
}
ret = 1;
err:
if (ctx != NULL) {
BN_CTX_end(ctx);
}
BN_CTX_free(new_ctx);
EC_POINT_free(tmp);
OPENSSL_free(wsize);
OPENSSL_free(wNAF_len);
if (wNAF != NULL) {
for (i = 0; i < total_num; i++) {
OPENSSL_free(wNAF[i]);
}
OPENSSL_free(wNAF);
}
if (val != NULL) {
for (i = 0; i < num_val; i++) {
EC_POINT_free(val[i]);
}
OPENSSL_free(val);
}
OPENSSL_free(val_sub);
return ret;
}