326 lines
12 KiB
C++
326 lines
12 KiB
C++
/*
|
|
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "modules/audio_processing/aec3/subtractor.h"
|
|
|
|
#include <algorithm>
|
|
#include <utility>
|
|
|
|
#include "api/array_view.h"
|
|
#include "modules/audio_processing/aec3/adaptive_fir_filter_erl.h"
|
|
#include "modules/audio_processing/aec3/fft_data.h"
|
|
#include "modules/audio_processing/logging/apm_data_dumper.h"
|
|
#include "rtc_base/checks.h"
|
|
#include "rtc_base/numerics/safe_minmax.h"
|
|
|
|
namespace webrtc {
|
|
|
|
namespace {
|
|
|
|
void PredictionError(const Aec3Fft& fft,
|
|
const FftData& S,
|
|
rtc::ArrayView<const float> y,
|
|
std::array<float, kBlockSize>* e,
|
|
std::array<float, kBlockSize>* s) {
|
|
std::array<float, kFftLength> tmp;
|
|
fft.Ifft(S, &tmp);
|
|
constexpr float kScale = 1.0f / kFftLengthBy2;
|
|
std::transform(y.begin(), y.end(), tmp.begin() + kFftLengthBy2, e->begin(),
|
|
[&](float a, float b) { return a - b * kScale; });
|
|
|
|
if (s) {
|
|
for (size_t k = 0; k < s->size(); ++k) {
|
|
(*s)[k] = kScale * tmp[k + kFftLengthBy2];
|
|
}
|
|
}
|
|
}
|
|
|
|
void ScaleFilterOutput(rtc::ArrayView<const float> y,
|
|
float factor,
|
|
rtc::ArrayView<float> e,
|
|
rtc::ArrayView<float> s) {
|
|
RTC_DCHECK_EQ(y.size(), e.size());
|
|
RTC_DCHECK_EQ(y.size(), s.size());
|
|
for (size_t k = 0; k < y.size(); ++k) {
|
|
s[k] *= factor;
|
|
e[k] = y[k] - s[k];
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
Subtractor::Subtractor(const EchoCanceller3Config& config,
|
|
size_t num_render_channels,
|
|
size_t num_capture_channels,
|
|
ApmDataDumper* data_dumper,
|
|
Aec3Optimization optimization)
|
|
: fft_(),
|
|
data_dumper_(data_dumper),
|
|
optimization_(optimization),
|
|
config_(config),
|
|
num_capture_channels_(num_capture_channels),
|
|
refined_filters_(num_capture_channels_),
|
|
coarse_filter_(num_capture_channels_),
|
|
refined_gains_(num_capture_channels_),
|
|
coarse_gains_(num_capture_channels_),
|
|
filter_misadjustment_estimators_(num_capture_channels_),
|
|
poor_coarse_filter_counters_(num_capture_channels_, 0),
|
|
refined_frequency_responses_(
|
|
num_capture_channels_,
|
|
std::vector<std::array<float, kFftLengthBy2Plus1>>(
|
|
std::max(config_.filter.refined_initial.length_blocks,
|
|
config_.filter.refined.length_blocks),
|
|
std::array<float, kFftLengthBy2Plus1>())),
|
|
refined_impulse_responses_(
|
|
num_capture_channels_,
|
|
std::vector<float>(GetTimeDomainLength(std::max(
|
|
config_.filter.refined_initial.length_blocks,
|
|
config_.filter.refined.length_blocks)),
|
|
0.f)) {
|
|
for (size_t ch = 0; ch < num_capture_channels_; ++ch) {
|
|
refined_filters_[ch] = std::make_unique<AdaptiveFirFilter>(
|
|
config_.filter.refined.length_blocks,
|
|
config_.filter.refined_initial.length_blocks,
|
|
config.filter.config_change_duration_blocks, num_render_channels,
|
|
optimization, data_dumper_);
|
|
|
|
coarse_filter_[ch] = std::make_unique<AdaptiveFirFilter>(
|
|
config_.filter.coarse.length_blocks,
|
|
config_.filter.coarse_initial.length_blocks,
|
|
config.filter.config_change_duration_blocks, num_render_channels,
|
|
optimization, data_dumper_);
|
|
refined_gains_[ch] = std::make_unique<RefinedFilterUpdateGain>(
|
|
config_.filter.refined_initial,
|
|
config_.filter.config_change_duration_blocks);
|
|
coarse_gains_[ch] = std::make_unique<CoarseFilterUpdateGain>(
|
|
config_.filter.coarse_initial,
|
|
config.filter.config_change_duration_blocks);
|
|
}
|
|
|
|
RTC_DCHECK(data_dumper_);
|
|
for (size_t ch = 0; ch < num_capture_channels_; ++ch) {
|
|
for (auto& H2_k : refined_frequency_responses_[ch]) {
|
|
H2_k.fill(0.f);
|
|
}
|
|
}
|
|
}
|
|
|
|
Subtractor::~Subtractor() = default;
|
|
|
|
void Subtractor::HandleEchoPathChange(
|
|
const EchoPathVariability& echo_path_variability) {
|
|
const auto full_reset = [&]() {
|
|
for (size_t ch = 0; ch < num_capture_channels_; ++ch) {
|
|
refined_filters_[ch]->HandleEchoPathChange();
|
|
coarse_filter_[ch]->HandleEchoPathChange();
|
|
refined_gains_[ch]->HandleEchoPathChange(echo_path_variability);
|
|
coarse_gains_[ch]->HandleEchoPathChange();
|
|
refined_gains_[ch]->SetConfig(config_.filter.refined_initial, true);
|
|
coarse_gains_[ch]->SetConfig(config_.filter.coarse_initial, true);
|
|
refined_filters_[ch]->SetSizePartitions(
|
|
config_.filter.refined_initial.length_blocks, true);
|
|
coarse_filter_[ch]->SetSizePartitions(
|
|
config_.filter.coarse_initial.length_blocks, true);
|
|
}
|
|
};
|
|
|
|
if (echo_path_variability.delay_change !=
|
|
EchoPathVariability::DelayAdjustment::kNone) {
|
|
full_reset();
|
|
}
|
|
|
|
if (echo_path_variability.gain_change) {
|
|
for (size_t ch = 0; ch < num_capture_channels_; ++ch) {
|
|
refined_gains_[ch]->HandleEchoPathChange(echo_path_variability);
|
|
}
|
|
}
|
|
}
|
|
|
|
void Subtractor::ExitInitialState() {
|
|
for (size_t ch = 0; ch < num_capture_channels_; ++ch) {
|
|
refined_gains_[ch]->SetConfig(config_.filter.refined, false);
|
|
coarse_gains_[ch]->SetConfig(config_.filter.coarse, false);
|
|
refined_filters_[ch]->SetSizePartitions(
|
|
config_.filter.refined.length_blocks, false);
|
|
coarse_filter_[ch]->SetSizePartitions(config_.filter.coarse.length_blocks,
|
|
false);
|
|
}
|
|
}
|
|
|
|
void Subtractor::Process(const RenderBuffer& render_buffer,
|
|
const std::vector<std::vector<float>>& capture,
|
|
const RenderSignalAnalyzer& render_signal_analyzer,
|
|
const AecState& aec_state,
|
|
rtc::ArrayView<SubtractorOutput> outputs) {
|
|
RTC_DCHECK_EQ(num_capture_channels_, capture.size());
|
|
|
|
// Compute the render powers.
|
|
const bool same_filter_sizes = refined_filters_[0]->SizePartitions() ==
|
|
coarse_filter_[0]->SizePartitions();
|
|
std::array<float, kFftLengthBy2Plus1> X2_refined;
|
|
std::array<float, kFftLengthBy2Plus1> X2_coarse_data;
|
|
auto& X2_coarse = same_filter_sizes ? X2_refined : X2_coarse_data;
|
|
if (same_filter_sizes) {
|
|
render_buffer.SpectralSum(refined_filters_[0]->SizePartitions(),
|
|
&X2_refined);
|
|
} else if (refined_filters_[0]->SizePartitions() >
|
|
coarse_filter_[0]->SizePartitions()) {
|
|
render_buffer.SpectralSums(coarse_filter_[0]->SizePartitions(),
|
|
refined_filters_[0]->SizePartitions(),
|
|
&X2_coarse, &X2_refined);
|
|
} else {
|
|
render_buffer.SpectralSums(refined_filters_[0]->SizePartitions(),
|
|
coarse_filter_[0]->SizePartitions(), &X2_refined,
|
|
&X2_coarse);
|
|
}
|
|
|
|
// Process all capture channels
|
|
for (size_t ch = 0; ch < num_capture_channels_; ++ch) {
|
|
RTC_DCHECK_EQ(kBlockSize, capture[ch].size());
|
|
SubtractorOutput& output = outputs[ch];
|
|
rtc::ArrayView<const float> y = capture[ch];
|
|
FftData& E_refined = output.E_refined;
|
|
FftData E_coarse;
|
|
std::array<float, kBlockSize>& e_refined = output.e_refined;
|
|
std::array<float, kBlockSize>& e_coarse = output.e_coarse;
|
|
|
|
FftData S;
|
|
FftData& G = S;
|
|
|
|
// Form the outputs of the refined and coarse filters.
|
|
refined_filters_[ch]->Filter(render_buffer, &S);
|
|
PredictionError(fft_, S, y, &e_refined, &output.s_refined);
|
|
|
|
coarse_filter_[ch]->Filter(render_buffer, &S);
|
|
PredictionError(fft_, S, y, &e_coarse, &output.s_coarse);
|
|
|
|
// Compute the signal powers in the subtractor output.
|
|
output.ComputeMetrics(y);
|
|
|
|
// Adjust the filter if needed.
|
|
bool refined_filters_adjusted = false;
|
|
filter_misadjustment_estimators_[ch].Update(output);
|
|
if (filter_misadjustment_estimators_[ch].IsAdjustmentNeeded()) {
|
|
float scale = filter_misadjustment_estimators_[ch].GetMisadjustment();
|
|
refined_filters_[ch]->ScaleFilter(scale);
|
|
for (auto& h_k : refined_impulse_responses_[ch]) {
|
|
h_k *= scale;
|
|
}
|
|
ScaleFilterOutput(y, scale, e_refined, output.s_refined);
|
|
filter_misadjustment_estimators_[ch].Reset();
|
|
refined_filters_adjusted = true;
|
|
}
|
|
|
|
// Compute the FFts of the refined and coarse filter outputs.
|
|
fft_.ZeroPaddedFft(e_refined, Aec3Fft::Window::kHanning, &E_refined);
|
|
fft_.ZeroPaddedFft(e_coarse, Aec3Fft::Window::kHanning, &E_coarse);
|
|
|
|
// Compute spectra for future use.
|
|
E_coarse.Spectrum(optimization_, output.E2_coarse);
|
|
E_refined.Spectrum(optimization_, output.E2_refined);
|
|
|
|
// Update the refined filter.
|
|
if (!refined_filters_adjusted) {
|
|
std::array<float, kFftLengthBy2Plus1> erl;
|
|
ComputeErl(optimization_, refined_frequency_responses_[ch], erl);
|
|
refined_gains_[ch]->Compute(X2_refined, render_signal_analyzer, output,
|
|
erl, refined_filters_[ch]->SizePartitions(),
|
|
aec_state.SaturatedCapture(), &G);
|
|
} else {
|
|
G.re.fill(0.f);
|
|
G.im.fill(0.f);
|
|
}
|
|
refined_filters_[ch]->Adapt(render_buffer, G,
|
|
&refined_impulse_responses_[ch]);
|
|
refined_filters_[ch]->ComputeFrequencyResponse(
|
|
&refined_frequency_responses_[ch]);
|
|
|
|
if (ch == 0) {
|
|
data_dumper_->DumpRaw("aec3_subtractor_G_refined", G.re);
|
|
data_dumper_->DumpRaw("aec3_subtractor_G_refined", G.im);
|
|
}
|
|
|
|
// Update the coarse filter.
|
|
poor_coarse_filter_counters_[ch] =
|
|
output.e2_refined < output.e2_coarse
|
|
? poor_coarse_filter_counters_[ch] + 1
|
|
: 0;
|
|
if (poor_coarse_filter_counters_[ch] < 5) {
|
|
coarse_gains_[ch]->Compute(X2_coarse, render_signal_analyzer, E_coarse,
|
|
coarse_filter_[ch]->SizePartitions(),
|
|
aec_state.SaturatedCapture(), &G);
|
|
} else {
|
|
poor_coarse_filter_counters_[ch] = 0;
|
|
coarse_filter_[ch]->SetFilter(refined_filters_[ch]->SizePartitions(),
|
|
refined_filters_[ch]->GetFilter());
|
|
coarse_gains_[ch]->Compute(X2_coarse, render_signal_analyzer, E_refined,
|
|
coarse_filter_[ch]->SizePartitions(),
|
|
aec_state.SaturatedCapture(), &G);
|
|
}
|
|
|
|
coarse_filter_[ch]->Adapt(render_buffer, G);
|
|
if (ch == 0) {
|
|
data_dumper_->DumpRaw("aec3_subtractor_G_coarse", G.re);
|
|
data_dumper_->DumpRaw("aec3_subtractor_G_coarse", G.im);
|
|
filter_misadjustment_estimators_[ch].Dump(data_dumper_);
|
|
DumpFilters();
|
|
}
|
|
|
|
std::for_each(e_refined.begin(), e_refined.end(),
|
|
[](float& a) { a = rtc::SafeClamp(a, -32768.f, 32767.f); });
|
|
|
|
if (ch == 0) {
|
|
data_dumper_->DumpWav("aec3_refined_filters_output", kBlockSize,
|
|
&e_refined[0], 16000, 1);
|
|
data_dumper_->DumpWav("aec3_coarse_filter_output", kBlockSize,
|
|
&e_coarse[0], 16000, 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
void Subtractor::FilterMisadjustmentEstimator::Update(
|
|
const SubtractorOutput& output) {
|
|
e2_acum_ += output.e2_refined;
|
|
y2_acum_ += output.y2;
|
|
if (++n_blocks_acum_ == n_blocks_) {
|
|
if (y2_acum_ > n_blocks_ * 200.f * 200.f * kBlockSize) {
|
|
float update = (e2_acum_ / y2_acum_);
|
|
if (e2_acum_ > n_blocks_ * 7500.f * 7500.f * kBlockSize) {
|
|
// Duration equal to blockSizeMs * n_blocks_ * 4.
|
|
overhang_ = 4;
|
|
} else {
|
|
overhang_ = std::max(overhang_ - 1, 0);
|
|
}
|
|
|
|
if ((update < inv_misadjustment_) || (overhang_ > 0)) {
|
|
inv_misadjustment_ += 0.1f * (update - inv_misadjustment_);
|
|
}
|
|
}
|
|
e2_acum_ = 0.f;
|
|
y2_acum_ = 0.f;
|
|
n_blocks_acum_ = 0;
|
|
}
|
|
}
|
|
|
|
void Subtractor::FilterMisadjustmentEstimator::Reset() {
|
|
e2_acum_ = 0.f;
|
|
y2_acum_ = 0.f;
|
|
n_blocks_acum_ = 0;
|
|
inv_misadjustment_ = 0.f;
|
|
overhang_ = 0.f;
|
|
}
|
|
|
|
void Subtractor::FilterMisadjustmentEstimator::Dump(
|
|
ApmDataDumper* data_dumper) const {
|
|
data_dumper->DumpRaw("aec3_inv_misadjustment_factor", inv_misadjustment_);
|
|
}
|
|
|
|
} // namespace webrtc
|