16 KiB
base/containers library
[TOC]
What goes here
This directory contains some STL-like containers.
Things should be moved here that are generally applicable across the code base. Don't add things here just because you need them in one place and think others may someday want something similar. You can put specialized containers in your component's directory and we can promote them here later if we feel there is broad applicability.
Design and naming
Fundamental //base principles apply, i.e.:
Containers should adhere as closely to STL as possible. Functions and behaviors not present in STL should only be added when they are related to the specific data structure implemented by the container.
For STL-like containers our policy is that they should use STL-like naming even when it may conflict with the style guide. So functions and class names should be lower case with underscores. Non-STL-like classes and functions should use Google naming. Be sure to use the base namespace.
Map and set selection
Usage advice
-
Generally avoid
std::unordered_set
andstd::unordered_map
. In the common case, query performance is unlikely to be sufficiently higher thanstd::map
to make a difference, insert performance is slightly worse, and the memory overhead is high. This makes sense mostly for large tables where you expect a lot of lookups. -
Most maps and sets in Chrome are small and contain objects that can be moved efficiently. In this case, consider
base::flat_map
andbase::flat_set
. You need to be aware of the maximum expected size of the container since individual inserts and deletes are O(n), giving O(n^2) construction time for the entire map. But because it avoids mallocs in most cases, inserts are better or comparable to other containers even for several dozen items, and efficiently-moved types are unlikely to have performance problems for most cases until you have hundreds of items. If your container can be constructed in one shot, the constructor from vector gives O(n log n) construction times and it should be strictly better than astd::map
.Conceptually inserting a range of n elements into a
base::flat_map
orbase::flat_set
behaves as if insert() was called for each individually element. Thus in case the input range contains repeated elements, only the first one of these duplicates will be inserted into the container. This behaviour applies to construction from a range as well. -
base::small_map
has better runtime memory usage without the poor mutation performance of large containers thatbase::flat_map
has. But this advantage is partially offset by additional code size. Prefer in cases where you make many objects so that the code/heap tradeoff is good. -
Use
std::map
andstd::set
if you can't decide. Even if they're not great, they're unlikely to be bad or surprising.
Map and set details
Sizes are on 64-bit platforms. Stable iterators aren't invalidated when the container is mutated.
Container | Empty size | Per-item overhead | Stable iterators? |
---|---|---|---|
std::map , std::set |
16 bytes | 32 bytes | Yes |
std::unordered_map , std::unordered_set |
128 bytes | 16 - 24 bytes | No |
base::flat_map , base::flat_set |
24 bytes | 0 (see notes) | No |
base::small_map |
24 bytes (see notes) | 32 bytes | No |
Takeaways: std::unordered_map
and std::unordered_set
have high
overhead for small container sizes, so prefer these only for larger workloads.
Code size comparisons for a block of code (see appendix) on Windows using strings as keys.
Container | Code size |
---|---|
std::unordered_map |
1646 bytes |
std::map |
1759 bytes |
base::flat_map |
1872 bytes |
base::small_map |
2410 bytes |
Takeaways: base::small_map
generates more code because of the inlining of
both brute-force and red-black tree searching. This makes it less attractive
for random one-off uses. But if your code is called frequently, the runtime
memory benefits will be more important. The code sizes of the other maps are
close enough it's not worth worrying about.
std::map and std::set
A red-black tree. Each inserted item requires the memory allocation of a node on the heap. Each node contains a left pointer, a right pointer, a parent pointer, and a "color" for the red-black tree (32 bytes per item on 64-bit platforms).
std::unordered_map and std::unordered_set
A hash table. Implemented on Windows as a std::vector
+ std::list
and in libc++
as the equivalent of a std::vector
+ a std::forward_list
. Both implementations
allocate an 8-entry hash table (containing iterators into the list) on
initialization, and grow to 64 entries once 8 items are inserted. Above 64
items, the size doubles every time the load factor exceeds 1.
The empty size is sizeof(std::unordered_map)
= 64 + the initial hash table
size which is 8 pointers. The per-item overhead in the table above counts the
list node (2 pointers on Windows, 1 pointer in libc++), plus amortizes the hash
table assuming a 0.5 load factor on average.
In a microbenchmark on Windows, inserts of 1M integers into a
std::unordered_set
took 1.07x the time of std::set
, and queries took 0.67x
the time of std::set
. For a typical 4-entry set (the statistical mode of map
sizes in the browser), query performance is identical to std::set
and
base::flat_set
. On ARM, std::unordered_set
performance can be worse because
integer division to compute the bucket is slow, and a few "less than" operations
can be faster than computing a hash depending on the key type. The takeaway is
that you should not default to using unordered maps because "they're faster."
base::flat_map and base::flat_set
A sorted std::vector
. Seached via binary search, inserts in the middle require
moving elements to make room. Good cache locality. For large objects and large
set sizes, std::vector
's doubling-when-full strategy can waste memory.
Supports efficient construction from a vector of items which avoids the O(n^2) insertion time of each element separately.
The per-item overhead will depend on the underlying std::vector
's reallocation
strategy and the memory access pattern. Assuming items are being linearly added,
one would expect it to be 3/4 full, so per-item overhead will be 0.25 *
sizeof(T).
flat_set
and flat_map
support a notion of transparent comparisons.
Therefore you can, for example, lookup base::StringPiece
in a set of
std::strings
without constructing a temporary std::string
. This
functionality is based on C++14 extensions to the std::set
/std::map
interface.
You can find more information about transparent comparisons in the less<void>
documentation.
Example, smart pointer set:
// Declare a type alias using base::UniquePtrComparator.
template <typename T>
using UniquePtrSet = base::flat_set<std::unique_ptr<T>,
base::UniquePtrComparator>;
// ...
// Collect data.
std::vector<std::unique_ptr<int>> ptr_vec;
ptr_vec.reserve(5);
std::generate_n(std::back_inserter(ptr_vec), 5, []{
return std::make_unique<int>(0);
});
// Construct a set.
UniquePtrSet<int> ptr_set(std::move(ptr_vec));
// Use raw pointers to lookup keys.
int* ptr = ptr_set.begin()->get();
EXPECT_TRUE(ptr_set.find(ptr) == ptr_set.begin());
Example flat_map<std::string, int>
:
base::flat_map<std::string, int> str_to_int({{"a", 1}, {"c", 2},{"b", 2}});
// Does not construct temporary strings.
str_to_int.find("c")->second = 3;
str_to_int.erase("c");
EXPECT_EQ(str_to_int.end(), str_to_int.find("c")->second);
// NOTE: This does construct a temporary string. This happens since if the
// item is not in the container, then it needs to be constructed, which is
// something that transparent comparators don't have to guarantee.
str_to_int["c"] = 3;
base::small_map
A small inline buffer that is brute-force searched that overflows into a full
std::map
or std::unordered_map
. This gives the memory benefit of
base::flat_map
for small data sizes without the degenerate insertion
performance for large container sizes.
Since instantiations require both code for a std::map
and a brute-force search
of the inline container, plus a fancy iterator to cover both cases, code size
is larger.
The initial size in the above table is assuming a very small inline table. The
actual size will be sizeof(int) + min(sizeof(std::map), sizeof(T) * inline_size)
.
Deque
Usage advice
Chromium code should always use base::circular_deque
or base::queue
in
preference to std::deque
or std::queue
due to memory usage and platform
variation.
The base::circular_deque
implementation (and the base::queue
which uses it)
provide performance consistent across platforms that better matches most
programmer's expectations on performance (it doesn't waste as much space as
libc++ and doesn't do as many heap allocations as MSVC). It also generates less
code tham std::queue
: using it across the code base saves several hundred
kilobytes.
Since base::deque
does not have stable iterators and it will move the objects
it contains, it may not be appropriate for all uses. If you need these,
consider using a std::list
which will provide constant time insert and erase.
std::deque and std::queue
The implementation of std::deque
varies considerably which makes it hard to
reason about. All implementations use a sequence of data blocks referenced by
an array of pointers. The standard guarantees random access, amortized
constant operations at the ends, and linear mutations in the middle.
In Microsoft's implementation, each block is the smaller of 16 bytes or the size of the contained element. This means in practice that every expansion of the deque of non-trivial classes requires a heap allocation. libc++ (on Android and Mac) uses 4K blocks which eliminates the problem of many heap allocations, but generally wastes a large amount of space (an Android analysis revealed more than 2.5MB wasted space from deque alone, resulting in some optimizations). libstdc++ uses an intermediate-size 512-byte buffer.
Microsoft's implementation never shrinks the deque capacity, so the capacity will always be the maximum number of elements ever contained. libstdc++ deallocates blocks as they are freed. libc++ keeps up to two empty blocks.
base::circular_deque and base::queue
A deque implemented as a circular buffer in an array. The underlying array will
grow like a std::vector
while the beginning and end of the deque will move
around. The items will wrap around the underlying buffer so the storage will
not be contiguous, but fast random access iterators are still possible.
When the underlying buffer is filled, it will be reallocated and the constents
moved (like a std::vector
). The underlying buffer will be shrunk if there is
too much wasted space (unlike a std::vector
). As a result, iterators are
not stable across mutations.
Stack
std::stack
is like std::queue
in that it is a wrapper around an underlying
container. The default container is std::deque
so everything from the deque
section applies.
Chromium provides base/containers/stack.h
which defines base::stack
that
should be used in preference to std::stack
. This changes the underlying
container to base::circular_deque
. The result will be very similar to
manually specifying a std::vector
for the underlying implementation except
that the storage will shrink when it gets too empty (vector will never
reallocate to a smaller size).
Watch out: with some stack usage patterns it's easy to depend on unstable behavior:
base::stack<Foo> stack;
for (...) {
Foo& current = stack.top();
DoStuff(); // May call stack.push(), say if writing a parser.
current.done = true; // Current may reference deleted item!
}
Safety
Code throughout Chromium, running at any level of privilege, may directly or indirectly depend on these containers. Much calling code implicitly or explicitly assumes that these containers are safe, and won't corrupt memory. Unfortunately, such assumptions have not always proven true.
Therefore, we are making an effort to ensure basic safety in these classes so
that callers' assumptions are true. In particular, we are adding bounds checks,
arithmetic overflow checks, and checks for internal invariants to the base
containers where necessary. Here, safety means that the implementation will
CHECK
.
As of 8 August 2018, we have added checks to the following classes:
base::StringPiece
base::span
base::Optional
base::RingBuffer
base::small_map
Ultimately, all base containers will have these checks.
Safety, completeness, and efficiency
Safety checks can affect performance at the micro-scale, although they do not always. On a larger scale, if we can have confidence that these fundamental classes and templates are minimally safe, we can sometimes avoid the security requirement to sandbox code that (for example) processes untrustworthy inputs. Sandboxing is a relatively heavyweight response to memory safety problems, and in our experience not all callers can afford to pay it.
(However, where affordable, privilege separation and reduction remain Chrome Security Team's first approach to a variety of safety and security problems.)
One can also imagine that the safety checks should be passed on to callers who require safety. There are several problems with that approach:
- Not all authors of all call sites will always
- know when they need safety
- remember to write the checks
- write the checks correctly
- write the checks maximally efficiently, considering
- space
- time
- object code size
- These classes typically do not document themselves as being unsafe
- Some call sites have their requirements change over time
- Code that gets moved from a low-privilege process into a high-privilege process
- Code that changes from accepting inputs from only trustworthy sources to accepting inputs from all sources
- Putting the checks in every call site results in strictly larger object code than centralizing them in the callee
Therefore, the minimal checks that we are adding to these base classes are the most efficient and effective way to achieve the beginning of the safety that we need. (Note that we cannot account for undefined behavior in callers.)
Appendix
Code for map code size comparison
This just calls insert and query a number of times, with printf
s that prevent
things from being dead-code eliminated.
TEST(Foo, Bar) {
base::small_map<std::map<std::string, Flubber>> foo;
foo.insert(std::make_pair("foo", Flubber(8, "bar")));
foo.insert(std::make_pair("bar", Flubber(8, "bar")));
foo.insert(std::make_pair("foo1", Flubber(8, "bar")));
foo.insert(std::make_pair("bar1", Flubber(8, "bar")));
foo.insert(std::make_pair("foo", Flubber(8, "bar")));
foo.insert(std::make_pair("bar", Flubber(8, "bar")));
auto found = foo.find("asdf");
printf("Found is %d\n", (int)(found == foo.end()));
found = foo.find("foo");
printf("Found is %d\n", (int)(found == foo.end()));
found = foo.find("bar");
printf("Found is %d\n", (int)(found == foo.end()));
found = foo.find("asdfhf");
printf("Found is %d\n", (int)(found == foo.end()));
found = foo.find("bar1");
printf("Found is %d\n", (int)(found == foo.end()));
}